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Public-key cryptology

Public-key encryption requires 3 algorithms:

1. Key generation, generating a public-key private-key pair.

2. Encryption, taking a public key and a message, producing ciphertext.

3. Decryption, taking a private key and a ciphertext, producing
plaintext.

Signatures also require 3 algorithms:

1. Key generation, generating a public-key private-key pair.

2. Signing, taking a private key and a message, producing a signature.

3. Verification, taking a public key and a signed message, producing
valid or not.

Reminder: signatures and MACs both ensure authenticity and integrity.

But a signature can be verified by anybody using a public key
while MACs require the same shared secret key.

Signatures belong to public-key cryptography;
MACs belong to symmetric-key cryptography.
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Encryption - formal security notions

Attacker goals

I Recover sk from pk.

I Recover m from Encpk(m),
i.e. break one-wayness (OW).

I Learn any information about plaintext (semantic security).

Equivalent to breaking indistinguishability (IND),
i.e., learning which of two attacker-chosen messages m0,m1 was
encrypted in c = Encpk(mi ) (beyond 50% chance of guessing.)

Attacker abilities

I Chosen plaintext attack (CPA)
Attacker gets encryption of plaintexts of his choice.

I Chosen ciphertext attack (CCA I / II)
Attacker can ask for decryptions of ciphertexts of his choice.
For II the attacker can continue asking for decryptions after
receiving a challenge ciphertext.
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Schoolbook RSA encryption
1977 Rivest, Shamir, Adleman. Do not use Schoolbook RSA in practice!

KeyGen:

1. Pick primes p, q; p 6= q.

2. Compute n = p · q, ϕ(n) = (p − 1)(q − 1).

3. Pick 1 < e < n with gcd(e, ϕ(n)) = 1.

4. Compute d ≡ e−1 mod ϕ(n).

5. Output public key (n, e), private key (n, d).

Enc message 0 ≤ m < n:

1. Compute c ≡ me mod n. See video on Exponentiation, & slides

2. Output c .

Dec ciphertext 0 ≤ c < n:

1. Compute m′ ≡ cd mod n.

2. Output m′.

This works:

m′ ≡ cd ≡ (me)d ≡ med = m1+kϕ(n) ≡ m · (mϕ(n))k≡m · 1 ≡ m mod n.

Some k exists with ed = 1 + kϕ(n)

Use Fermat’s little theorem.
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Security analysis schoolbook RSA encryption

Attacker goals

I Learn any information about plaintext (semantic security).
Equivalent to breaking Indistinguishability (IND),
i.e., learning which of two attacker-chosen messages m0,m1 was
encrypted in c = Encpk(mi ) (beyond 50% chance of guessing.)

Attacker abilities

I Chosen plaintext attack (CPA)
Attacker gets encryption of plaintexts of his choice.

Schoolbook RSA is not IND-CPA secure:
Attacker chooses two random messages m0,m1.
Challenger picks b ∈ {0, 1} at random and sends back c = Enc(mb)..

Schoolbook RSA is deterministic!
The attacker can just compute me

0 mod n and me
1 mod n and check

which one matches c .

Not IND-CPA secure implies not IND-CCA secure.
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RSA encryption is homomorphic

An encryption system is homomorphic if there exist operations ◦ on the
ciphertext space and 4 on the message space so that

Enck(m1) ◦ Enck(m2) = Enck(m14m2).

For RSA we have

c1 · c2 ≡ me
1 ·me

2 ≡ (m1 ·m2)e mod n,

so RSA is homomorphic with ◦ = 4 being multiplication modulo n.

Homomorphic properties can be desired, so this is not strictly a problem,
but it’s important to be aware of them.
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Security requirements

Attacker goals

I Recover m from Encpk(m),
i.e. break one-wayness (OW).

Attacker abilities

I Chosen ciphertext attack (CCA I / II)
Attacker can ask for decryptions of ciphertexts of his choice.
For II the attacker can continue asking for decryptions after
receiving a challenge ciphertext.

Homomorphic systems cannot be OW-CCA II secure:
Pick random message r compute cr = Encpk(r) and submit

c 6= c ′ = cr ◦ c = Encpk(r) ◦ Encpk(m) = Encpk(r4m)

for decryption. From r4m recover m.

The fine print: This requires 4 to be an operation so that m can be recovered from
r4m and r . Note that the attacker has no restrictions in choosing r other than c ′ 6= c.
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RSA OAEP – Optimal asymmetric encryption padding

Let modulus n have ` bits. Messages have `− k0 − k1 bits.

OAEP appends k0 + k1

bits to message m.

There are k1 bits all
equal to zero and k0

random bits in r .

G is cryptographic
hash function
{0, 1}k0 → {0, 1}`−k0 .
H is cryptographic
hash function
{0, 1}`−k0 → {0, 1}k0 .

m

`− k0 − k1

0 . . . 0

k1

r

k0

G

H

s

`− k0

t

k0

Image credit: adapted from Matthieu Giraud

RSA OAEP first computes M = (s, t), the OAEP encoding of m.
Then encrypts M as Me mod n. RSA OAEP is CCA-II secure.
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