RSA I

Security notions and schoolbook RSA

Tanja Lange

Eindhoven University of Technology

2MMC10 - Cryptology

Public-key cryptology

Public-key encryption requires 3 algorithms:

- 1. Key generation, generating a public-key private-key pair.
- 2. Encryption, taking a public key and a message, producing ciphertext.
- 3. Decryption, taking a private key and a ciphertext, producing plaintext.

Signatures also require 3 algorithms:

- 1. Key generation, generating a public-key private-key pair.
- 2. Signing, taking a private key and a message, producing a signature.
- 3. Verification, taking a public key and a signed message, producing valid or not.

Reminder: signatures and MACs both ensure authenticity and integrity.

But a signature can be verified by *anybody* using a public key while MACs require *the same shared secret key*.

Signatures belong to public-key cryptography; MACs belong to symmetric-key cryptography.

Encryption - formal security notions

Attacker goals

- Recover sk from pk.
- Recover *m* from Enc_{pk}(*m*),
 - i.e. break one-wayness (OW).
- ► Learn any information about plaintext (semantic security).

Encryption - formal security notions

Attacker goals

- Recover sk from pk.
- Recover *m* from Enc_{pk}(*m*),
 i.e. break one-wayness (OW).
- Learn any information about plaintext (semantic security).
 Equivalent to breaking indistinguishability (IND),
 i.e., learning which of two attacker-chosen messages m₀, m₁ was encrypted in c = Enc_{pk}(m_i) (beyond 50% chance of guessing.)

Attacker abilities

- Chosen plaintext attack (CPA) Attacker gets encryption of plaintexts of his choice.
- Chosen ciphertext attack (CCA I / II) Attacker can ask for decryptions of ciphertexts of his choice. For II the attacker can continue asking for decryptions after receiving a challenge ciphertext.

1977 Rivest, Shamir, Adleman. Do not use Schoolbook RSA in practice!

1977 Rivest, Shamir, Adleman. Do not use Schoolbook RSA in practice! KeyGen:

- 1. Pick primes $p, q; p \neq q$.
- 2. Compute $n = p \cdot q$, $\varphi(n) = (p 1)(q 1)$.
- 3. Pick 1 < e < n with $gcd(e, \varphi(n)) = 1$.
- 4. Compute $d \equiv e^{-1} \mod \varphi(n)$.
- 5. Output public key (n, e), private key (n, d).

1977 Rivest, Shamir, Adleman. Do not use Schoolbook RSA in practice! KeyGen:

- 1. Pick primes $p, q; p \neq q$.
- 2. Compute $n = p \cdot q$, $\varphi(n) = (p 1)(q 1)$.
- 3. Pick 1 < e < n with $gcd(e, \varphi(n)) = 1$.
- 4. Compute $d \equiv e^{-1} \mod \varphi(n)$.
- 5. Output public key (n, e), private key (n, d).

Enc message $0 \le m < n$:

- 1. Compute $c \equiv m^e \mod n$. See video on Exponentiation, & slides
- 2. Output c.

Dec ciphertext $0 \le c < n$:

- 1. Compute $m' \equiv c^d \mod n$.
- 2. Output m'.

1977 Rivest, Shamir, Adleman. Do not use Schoolbook RSA in practice! KeyGen:

- 1. Pick primes $p, q; p \neq q$.
- 2. Compute $n = p \cdot q$, $\varphi(n) = (p 1)(q 1)$.
- 3. Pick 1 < e < n with $gcd(e, \varphi(n)) = 1$.
- 4. Compute $d \equiv e^{-1} \mod \varphi(n)$.
- 5. Output public key (n, e), private key (n, d).

Enc message $0 \le m < n$:

1. Compute $c \equiv m^e \mod n$. See video on Exponentiation, & slides

Some k exists with $ed = 1 + k\varphi(n)$

Use Fermat's little theorem.

2. Output c.

Dec ciphertext $0 \le c < n$:

- 1. Compute $m' \equiv c^d \mod n$.
- 2. Output *m*'.

This works:

$$m' \equiv c^d \equiv (m^e)^d \equiv m^{ed} = m^{1+k\varphi(n)} \equiv m \cdot (m^{\varphi(n)})^k \equiv m \cdot 1 \equiv m \mod n.$$

Security analysis schoolbook RSA encryption

Attacker goals

Learn any information about plaintext (semantic security).
 Equivalent to breaking Indistinguishability (IND),
 i.e., learning which of two attacker-chosen messages m₀, m₁ was encrypted in c = Enc_{pk}(m_i) (beyond 50% chance of guessing.)

Attacker abilities

Chosen plaintext attack (CPA)

Attacker gets encryption of plaintexts of his choice.

Schoolbook RSA is not IND-CPA secure:

Attacker chooses two random messages m_0, m_1 .

Challenger picks $b \in \{0,1\}$ at random and sends back $c = \mathsf{Enc}(m_b)$..

Security analysis schoolbook RSA encryption

Attacker goals

Learn any information about plaintext (semantic security). Equivalent to breaking Indistinguishability (IND), i.e., learning which of two attacker-chosen messages m₀, m₁ was encrypted in c = Enc_{pk}(m_i) (beyond 50% chance of guessing.)

Attacker abilities

Chosen plaintext attack (CPA)
 Attacker gets encryption of plaintexts

Attacker gets encryption of plaintexts of his choice.

Schoolbook RSA is not IND-CPA secure:

Attacker chooses two random messages m_0, m_1 .

Challenger picks $b \in \{0,1\}$ at random and sends back $c = \mathsf{Enc}(m_b)$..

Schoolbook RSA is deterministic!

The attacker can just compute $m_0^e \mod n$ and $m_1^e \mod n$ and check which one matches c.

Not IND-CPA secure implies not IND-CCA secure.

RSA encryption is homomorphic

An encryption system is homomorphic if there exist operations \circ on the ciphertext space and \bigtriangleup on the message space so that

 $\operatorname{Enc}_k(m_1) \circ \operatorname{Enc}_k(m_2) = \operatorname{Enc}_k(m_1 \triangle m_2).$

RSA encryption is homomorphic

An encryption system is homomorphic if there exist operations \circ on the ciphertext space and \bigtriangleup on the message space so that

$$\operatorname{Enc}_k(m_1) \circ \operatorname{Enc}_k(m_2) = \operatorname{Enc}_k(m_1 \triangle m_2).$$

For RSA we have

$$c_1 \cdot c_2 \equiv m_1^e \cdot m_2^e \equiv (m_1 \cdot m_2)^e \mod n,$$

so RSA is homomorphic with $\circ = \triangle$ being multiplication modulo *n*.

RSA encryption is homomorphic

An encryption system is homomorphic if there exist operations \circ on the ciphertext space and \bigtriangleup on the message space so that

$$\operatorname{Enc}_k(m_1) \circ \operatorname{Enc}_k(m_2) = \operatorname{Enc}_k(m_1 \triangle m_2).$$

For RSA we have

$$c_1 \cdot c_2 \equiv m_1^e \cdot m_2^e \equiv (m_1 \cdot m_2)^e \mod n,$$

so RSA is homomorphic with $\circ = \triangle$ being multiplication modulo *n*.

Homomorphic properties can be desired, so this is not strictly a problem, but it's important to be aware of them.

Attacker goals

- Recover *m* from Enc_{pk}(*m*),
 - i.e. break one-wayness (OW).

Attacker abilities

 Chosen ciphertext attack (CCA I / II) Attacker can ask for decryptions of ciphertexts of his choice.
 For II the attacker can continue asking for decryptions after receiving a challenge ciphertext.

Attacker goals

- Recover *m* from Enc_{pk}(*m*),
 - i.e. break one-wayness (OW).

Attacker abilities

 Chosen ciphertext attack (CCA I / II) Attacker can ask for decryptions of ciphertexts of his choice.
 For II the attacker can continue asking for decryptions after receiving a challenge ciphertext.

Homomorphic systems cannot be OW-CCA II secure:

Attacker goals

- Recover *m* from Enc_{pk}(*m*),
 - i.e. break one-wayness (OW).

Attacker abilities

 Chosen ciphertext attack (CCA I / II) Attacker can ask for decryptions of ciphertexts of his choice.
 For II the attacker can continue asking for decryptions after receiving a challenge ciphertext.

Homomorphic systems cannot be OW-CCA II secure: Pick random message r compute $c_r = \text{Enc}_{pk}(r)$ and submit

$$c \neq c' = c_r \circ c = \mathsf{Enc}_{\mathsf{pk}}(r) \circ \mathsf{Enc}_{\mathsf{pk}}(m) = \mathsf{Enc}_{\mathsf{pk}}(r \triangle m)$$

for decryption.

Attacker goals

- Recover *m* from Enc_{pk}(*m*),
 - i.e. break one-wayness (OW).

Attacker abilities

 Chosen ciphertext attack (CCA I / II) Attacker can ask for decryptions of ciphertexts of his choice.
 For II the attacker can continue asking for decryptions after receiving a challenge ciphertext.

Homomorphic systems cannot be OW-CCA II secure: Pick random message r compute $c_r = \text{Enc}_{pk}(r)$ and submit

$$c \neq c' = c_r \circ c = \mathsf{Enc}_{\mathsf{pk}}(r) \circ \mathsf{Enc}_{\mathsf{pk}}(m) = \mathsf{Enc}_{\mathsf{pk}}(r \triangle m)$$

for decryption. From $r \triangle m$ recover m.

The fine print: This requires \triangle to be an operation so that *m* can be recovered from $r \triangle m$ and *r*. Note that the attacker has no restrictions in choosing *r* other than $c' \neq c$.

RSA OAEP – Optimal asymmetric encryption padding

Let modulus *n* have ℓ bits. Messages have $\ell - k_0 - k_1$ bits.

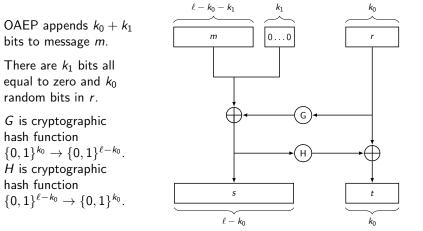


Image credit: adapted from Matthieu Giraud

RSA OAEP first computes M = (s, t), the OAEP encoding of m. Then encrypts M as $M^e \mod n$. RSA OAEP is CCA-II secure.

Tanja Lange