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Pairings

Let (G1,+),(Go,+) and (Gr,-) be groups of prime order ¢
and let e : G; X G — G7 be a map satisfying

e(P+Q,R')=e(P,R)e(Q,R"), e(P,R'+S")=e(P,R)e(P,S)

and that e is non-degenerate in the first argument,
i.e., e(P,R") =1 for all R € Gy, implies P is the identity in G;.

Such an e is called a bilinear map or pairing.
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and that e is non-degenerate in the first argument,
i.e., e(P,R") =1 for all R € Gy, implies P is the identity in G;.

Such an e is called a bilinear map or pairing.

Weil and Tate pairing have G; C E(F,) and map to Fl
More precisely, G C Fpk, with order /.

By Legendre, ¢ must divide pk — 1 = #F;k, for subgroup to exist.
Less obvious: Gy C E(F ).
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Pairings

Let (G1,+),(Go,+) and (Gr,-) be groups of prime order ¢
and let e : G; X G — G7 be a map satisfying

e(P+Q,R')=e(P,R)e(Q,R"), e(P,R'+S")=e(P,R)e(P,S)

and that e is non-degenerate in the first argument,
i.e., e(P,R") =1 for all R € Gy, implies P is the identity in G;.

Such an e is called a bilinear map or pairing.

Weil and Tate pairing have G; C E(F,) and map to Fl
More precisely, G C Fpk, with order /.

By Legendre, ¢ must divide pk — 1 = #F;k, for subgroup to exist.
Less obvious: Gy C E(F ).

The embedding degree k satisfies k is minimal with ¢ | (pk — 1).
Cost of pairing computation: polynomial in log,(¢) and log,(p¥).
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Consequences of pairings — DDHP

Assume that G; = G, and e(P, P) # 1.
For all triples (aP, bP, cP) € (P)3 can decide whether

logp(cP) = logp(aP) logp(bP)
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Assume that G; = G, and e(P, P) # 1.

For all triples (aP, bP, cP) € (P)3 can decide whether
logp(cP) = logp(aP) logp(bP)

by comparing e(aP, bP) and e(P, cP).

This means that the decisional Diffie-Hellman problem is easy if
such a pairing is available.
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Consequences of pairings — DDHP

Assume that G; = G, and e(P, P) # 1.
For all triples (aP, bP, cP) € (P)3 can decide whether
logp(cP) = logp(aP) logp(bP)

by comparing e(aP, bP) and e(P, cP).

This means that the decisional Diffie-Hellman problem is easy if
such a pairing is available.

Only very special pairings have G; = G, and e(P, P) # 1.
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Consequences of pairings — DLP

Even if G; # Gy one can transfer the DLP in G; to a DLP in Gr,
if one can find an element P’ € G, with P — e(P, P’) # 1.
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Consequences of pairings — DLP

Even if G; # Gy one can transfer the DLP in G; to a DLP in Gr,
if one can find an element P’ € G, with P — e(P, P’) # 1.

DL with base P, target @ = aP in Gy maps to
DL with base g = e(P, P’), target
h=e(Q,P)
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Consequences of pairings — DLP

Even if G; # Gy one can transfer the DLP in G; to a DLP in Gr,
if one can find an element P’ € G, with P — e(P, P’) # 1.

DL with base P, target @ = aP in Gy maps to

DL with base g = e(P, P’), target

h=e(Q,P') = e(aP, P') = (e(P, P')° = g°.

The DL system G is at most as secure as the system Gr.

Pairings are interesting attack tool if DLP in Gy is easier to solve.
Note Gt C F:k which has index calculus attacks.

Pairings exist for all elliptic curves but typically k is large,
making F;‘;k a worse target.
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