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Pairings

Let (G1,+), (G2,+) and (GT , ·) be groups of prime order `
and let e : G1 × G2 → GT be a map satisfying

e(P+Q,R ′) = e(P,R ′)e(Q,R ′), e(P,R ′+S ′) = e(P,R ′)e(P, S ′)

and that e is non-degenerate in the first argument,
i.e., e(P,R ′) = 1 for all R ′ ∈ G2, implies P is the identity in G1.

Such an e is called a bilinear map or pairing.

Weil and Tate pairing have G1 ⊆ E (Fp) and map to F∗
pk

.
More precisely, GT ⊂ Fpk , with order `.

By Legendre, ` must divide pk − 1 = #F∗
pk

, for subgroup to exist.

Less obvious: G2 ⊂ E (Fpk ).

The embedding degree k satisfies k is minimal with ` | (pk − 1).

Cost of pairing computation: polynomial in log2(`) and log2(pk).
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Consequences of pairings – DDHP

Assume that G1 = G2 and e(P,P) 6= 1.

For all triples (aP, bP, cP) ∈ 〈P〉3 can decide whether

logP(cP) = logP(aP) logP(bP)

by comparing e(aP, bP) and e(P, cP).

This means that the decisional Diffie-Hellman problem is easy if
such a pairing is available.

Only very special pairings have G1 = G2 and e(P,P) 6= 1.
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Consequences of pairings – DLP

Even if G1 6= G2 one can transfer the DLP in G1 to a DLP in GT ,
if one can find an element P ′ ∈ G2 with P → e(P,P ′) 6= 1.

DL with base P, target Q = aP in G1 maps to
DL with base g = e(P,P ′), target
h = e(Q,P ′) = e(aP,P ′) = (e(P,P ′))a = ga.
The DL system G1 is at most as secure as the system GT .

Pairings are interesting attack tool if DLP in GT is easier to solve.
Note GT ⊂ F∗

pk
which has index calculus attacks.

Pairings exist for all elliptic curves but typically k is large,
making F∗

pk
a worse target.
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