Introduction How all the pieces fit together

Tanja Lange

Eindhoven University of Technology

2MMC10 - Cryptology

Cryptology page

https://www.hyperelliptic.org/tanja/teaching/crypto21/

		Cryptology — Mozilla Firefox					
cryptology	× +						
€) →	🛛 🚔 https://www.hyperelliptic.org/tanja/teaching/	🔒 https://www.hyperelliptic.org/lanja/teaching/crypto21/					
	Connection Security for www.hyperelliptic.org						
	You are securely connected to this site.	MC10 Cryptology - Fall 2021					
	Verified by: Let's Encrypt						
	More Information	ncements Exams Literature Topics Course Follow- Old					
		<u>notes up Exams</u>					

Tanja Lange Coding Theory and Cryptology Eindhoven Institute for the Protection of Information Department of Mathematics and Computer Science Room MF 6.104B Technische Universiteit Eindhoven P.O. Box 513 5600 MB Eindhoven Netherlands

Phone: +31 (0) 40 247 4764

The easiest ways to reach me wherever I am: e-mail:<u>tanja@hyperelliptic.org</u>

• This page belongs to course 2MMC10 - Cryptology. This course is offered at TU/e and aimed at students of mathematics and computer science.

Contents

• The general structure of block ciphers, Feistel ciphers like DES, AES, the most suitable modes-of-use, e.g.

Cryptology page

https://www.hyperelliptic.org/tanja/teaching/crypto21/

L<u>ange</u> J Theory and Cryptology

Cryptology page

https://www.hyperelliptic.org/tanja/teaching/crypto21/

• 🧉	Page Info — https://hyperelliptic.org/tania/news.html							.html	_ _ _ ×	
	Media <u>P</u>	ermissions								
Website Id Website:	hyperel	liptic.org								
Owner: Verified by:	This we Let's En	bsite does n crypt	ot supply ov	vnership in	formation.				View Certificate	
Expires on:	Novemi	oer 8, 2021								
Privacy & I Have I visite		bsite prior to	o today?				Yes, 9 times			
Is this website storing information on my computer?					No	Clear Cookies and Site Data				
Have I saved any passwords for this website?					No	Vie <u>w</u> Saved Passwords				

Technical Details

Connection Encrypted (TLS_AES_256_GCM_SHA384, 256 bit keys, TLS 1.3)

The page you are viewing was encrypted before being transmitted over the Internet.

Encryption makes it difficult for unauthorized people to view information traveling between computers. It is therefore unlikely that anyone read this page as it traveled across the network.

Help

More details

https://www.ssllabs.com/ssltest/analyze.html?d=hyperelliptic.org

	SSL Server Test: hyperelliptic.org (Powered by Qualys SSL Labs) — Mozilla Firefox	
ps	www.ssilabs.com/ssiltestranalyze.html?d=hyperelliptic.org	0
	Cipher Suites	
	# TLS 1.3 (suites in server-preferred order)	
	TLS_AES_256_GCM_SHA384 (0x1302) ECDH x25519 (eq. 3072 bits RSA) FS	
	TLS_CHACHA20_POLY1305_SHA256 (0x1303) ECDH x25519 (eq. 3072 bits RSA) FS	
	TLS_AES_128_GCM_SHA256 (0x1301) ECDH x25519 (eq. 3072 bits RSA) FS	
	# TLS 1.2 (suites in server-preferred order)	
	TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (0xcca8) ECDH x25519 (eq. 3072 bits RSA) FS	
	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030) ECDH x25519 (eq. 3072 bits RSA) FS	
	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) ECDH x25519 (eq. 3072 bits RSA) FS WEAK	
	TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f) ECDH x25519 (eq. 3072 bits RSA) FS	
	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (0xc027) ECDH x25519 (eq. 3072 bits RSA) FS WEAK	
	TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (0x9f) DH 2048 bits FS	
	TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (0x6b) DH 2048 bits FS WEAK	
	TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384 (0xc061) ECDH x25519 (eq. 3072 bits RSA) FS	
	TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256 (0xc060) ECDH x25519 (eq. 3072 bits RSA) FS	
	TLS ECDHE RSA WITH AES 256 CBC SHA (0xc014) ECDH x25519 (eq. 3072 bits RSA) FS WEAK	

- How can it be that I talk to the server securely? Why do we have have a shared secret without ever meeting?
- How do I know that I talk to the correct server?
- How do I receive or send data secure?
- How is this data secured against modification?

- How can it be that I talk to the server securely?
 Why do we have have a shared secret without ever meeting?
- How do I know that I talk to the correct server?
- How do I receive or send data secure?
- How is this data secured against modification?

Important disctinction

Public-key cryptography

Each user has 2 keys: a public key and a private key.

Public key can be posted online; private key must be kept secret.

Often can compute public key from private key. Other direction must be hard. **Symmetric-key cryptography** Each pair of users shares a key. Knowlege of this key is symmetric between both.

This key must be kept secret.

Symmetric systems often faster than public-key systems. Use latter to get symmetric key.

Tanja Lange

Introduction

- How can it be that I talk to the server securely?
 - Why do we have have a shared secret without ever meeting?
- How do I know that I talk to the correct server?
- How do I receive or send data secure?
- How is this data secured against modification?

Important disctinction

Public-key cryptography

Each user has 2 keys: a public key and a private key.

Public key can be posted online; private key must be kept secret.

Often can compute public key from private key. Other direction must be hard. **Symmetric-key cryptography** Each pair of users shares a key. Knowlege of this key is symmetric between both.

This key must be kept secret.

Symmetric systems often faster than public-key systems. Use latter to get symmetric key.

Tanja Lange

Introduction

- How can it be that I talk to the server securely?
 - Why do we have have a shared secret without ever meeting?
- How do I know that I talk to the correct server?
- How do I receive or send data secure?
- How is this data secured against modification?

Important disctinction

Public-key cryptography

Each user has 2 keys: a public key and a private key.

Public key can be posted online; private key must be kept secret.

Often can compute public key from private key. Other direction must be hard. **Symmetric-key cryptography** Each pair of users shares a key. Knowlege of this key is symmetric between both.

This key must be kept secret.

Symmetric systems often faster than public-key systems. Use latter to get symmetric key.

Tanja Lange

Introduction