Cryptographic hash functions V Sponge functions

Tanja Lange

Eindhoven University of Technology

2MMC10 - Cryptology

Sponge for hash function

- m_i: message blocks, each having r bits; pad if necessary.
- *h_i*: blocks of hash output, each having *r* bits, total of *d* bits.
- f: permutation on $\{0,1\}^{r+c}$.
- *c*: "capacity"; never output bits in bottom *c* positions.
- r: "rate" this many bits are absorbed or squeezed out per f.
- c determines security, r determines efficiency.

Tanja Lange

Cryptographic hash functions V

SHA-3 is new (2015) hash function standard, issued by NIST after public competition. SHA-3-d outputs d bits, r + c = 1600.

• *m_i*: message blocks, each having *r* bits; pad if necessary.

- h_i : blocks of hash output, each having r bits, total of d bits.
- f: permutation on $\{0,1\}^{r+c}$.
- c: "capacity"; never output bits in bottom c positions.

- r: "rate" this many bits are absorbed or squeezed out per f.
- c determines security, r determines efficiency.

SHA-3 is new (2015) hash function standard, issued by NIST after public competition. SHA-3-d outputs d bits, r + c = 1600.

- m_i : message blocks, each having r bits; pad if necessary. Message m, append p = 10...01 so that r divides len(m||p). This appends at least 2 bits (11) and at most r + 1 bits. Let n = len(m||p)/r.
- h_i : blocks of hash output, each having r bits, total of d bits.
- f: permutation on $\{0,1\}^{r+c}$.
- c: "capacity"; never output bits in bottom c positions.

- r: "rate" this many bits are absorbed or squeezed out per f.
- c determines security, r determines efficiency.

SHA-3 is new (2015) hash function standard, issued by NIST after public competition. SHA-3-d outputs d bits, r + c = 1600.

- m_i : message blocks, each having r bits; pad if necessary. Message m, append p = 10...01 so that r divides len(m||p). This appends at least 2 bits (11) and at most r + 1 bits. Let n = len(m||p)/r.
- *h_i*: blocks of hash output, each having *r* bits, total of *d* bits.
 d depends on security level, output blocks possibly truncated.
- f: permutation on $\{0,1\}^{r+c}$.
- c: "capacity"; never output bits in bottom c positions.

- r: "rate" this many bits are absorbed or squeezed out per f.
- c determines security, r determines efficiency.

SHA-3 is new (2015) hash function standard, issued by NIST after public competition. SHA-3-d outputs d bits, r + c = 1600.

- m_i : message blocks, each having r bits; pad if necessary. Message m, append p = 10...01 so that r divides len(m||p). This appends at least 2 bits (11) and at most r + 1 bits. Let n = len(m||p)/r.
- *h_i*: blocks of hash output, each having *r* bits, total of *d* bits.
 d depends on security level, output blocks possibly truncated.
- f: permutation on $\{0,1\}^{r+c}$.
 - f should be efficient and look random, optimization target.
- c: "capacity"; never output bits in bottom c positions.

- r: "rate" this many bits are absorbed or squeezed out per f.
- c determines security, r determines efficiency.

SHA-3 is new (2015) hash function standard, issued by NIST after public competition. SHA-3-d outputs d bits, r + c = 1600.

- m_i : message blocks, each having r bits; pad if necessary. Message m, append p = 10...01 so that r divides len(m||p). This appends at least 2 bits (11) and at most r + 1 bits. Let n = len(m||p)/r.
- *h_i*: blocks of hash output, each having *r* bits, total of *d* bits.
 d depends on security level, output blocks possibly truncated.
- f: permutation on $\{0,1\}^{r+c}$.

f should be efficient and look random, optimization target.

- c: "capacity"; never output bits in bottom c positions.
 Can make security reduction assuming that f is random.
 PRE and SPR are min{2^{c/2}, 2^d}. CR is min{2^{c/2}, 2^{d/2}}.
- r: "rate" this many bits are absorbed or squeezed out per f.
- c determines security, r determines efficiency.

SHA-3 is new (2015) hash function standard, issued by NIST after public competition. SHA-3-d outputs d bits, r + c = 1600.

- m_i : message blocks, each having r bits; pad if necessary. Message m, append p = 10...01 so that r divides len(m||p). This appends at least 2 bits (11) and at most r + 1 bits. Let n = len(m||p)/r.
- *h_i*: blocks of hash output, each having *r* bits, total of *d* bits.
 d depends on security level, output blocks possibly truncated.
- f: permutation on $\{0,1\}^{r+c}$.

f should be efficient and look random, optimization target.

- c: "capacity"; never output bits in bottom c positions.
 Can make security reduction assuming that f is random.
 PRE and SPR are min{2^{c/2}, 2^d}. CR is min{2^{c/2}, 2^{d/2}}.
- r: "rate" this many bits are absorbed or squeezed out per f. r = 1600 - c. Choices are $c \in \{224, 256, 384, 512\}$.
- c determines security, r determines efficiency.