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More terms from complexity theory: reductions
• A reduction transforms algorithm for problem 1 into an

algorithm for problem 2.
• “Reduces problem 2 to problem 1”

(Can solve problem 2 by solving problem 1)
• Allows to relate the hardness of problems:

If there exists an efficient reduction that reduces problem 2 to
problem 1 then an efficient algorithm solving problem 1 can
be used to efficiently solve problem 2.

We have seen:
CDHP and DDHP reduce to DLP; DDHP reduces to CDHP.

• Existence of reduction does not imply that the probabilities of
success are equal.

• A reduction might require solving problem 1 multiple times.

These factors control the tightness of the reduction.
In cryptography, reductions relate the security of systems.

“Provable Security”: Reduce an assumed to be hard problem to
the security of a bigger cryptosystem. No absolute proof.
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Reductions between hash function properties I
Second preimage resistance (SPR): For any PPT algorithm A

Pr[k ←R {0, 1}n, x ←R {0, 1}`(n), x ′ ← A(k, x) : H(k , x ′) = H(k, x)∧x ′ 6= x ]
is negligible in n.

Collision resistance (CR): For any PPT algorithm A

Pr[k ←R {0, 1}n, (x , x ′)← A(k) : H(k, x ′) = H(k, x) and x ′ 6= x ]
is negligible in n.

CR reduces to SPR.
Need to show how to construct ACR given ASPR.
Proof: Given k ∈ {0, 1}n, pick randomly x ←R {0, 1}`(n).
Run ASPR(k , x) to get x ′ 6= x with H(k , x ′) = H(k , x).
Output (x , x ′).

Algorithm ACR has same runtime and success probability as ASPR.
Fails if H(k, x) has no second preimage.

Can iterate over x ←R {0, 1}`(n), good chance if `(n)� n.

This means that a collision resistant function is also second
preimage resistant.
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Reductions between hash function properties II
Preimage resistance: For any PPT algorithm A

Pr[k ←R {0, 1}n, x ←R {0, 1}`(n), y ← H(k , x), x ′ ← A(k , y) : H(k , x ′) = y ]
is negligible in n.

Second preimage resistance (SPR): For any PPT algorithm A
Pr[k ←R {0, 1}n, x ←R {0, 1}`(n), x ′ ← A(k, x) : H(k , x ′) = H(k, x)∧x ′ 6= x ]

is negligible in n.

Does SPR reduce to PRE?

Attempt at proof: Use APRE to build ASPR.
Given k ∈ {0, 1}n, pick randomly x ←R {0, 1}`(n).
Run APRE(k,H(k , x)) to get x ′ with H(k , x ′) = y .
Hope that x ′ 6= x . Output x ′.

No chance if H is injective.
If `(n)� n we have a good chance that y = H(k , x) has a second
preimage. If so, have at least 50% chance of x ′ 6= x .
Need to use APRE a few times. Exact numbers depend on `(n)/n.

If we can decide if H(k, x) has a second preimage (DSPR),
we can skip `(n)� n condition.
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