Cryptographic hash functions Ill

Formal security notions

Tanja Lange
Eindhoven University of Technology

2MMC10 — Cryptology



Some terms from complexity theory

e Polynomial time algorithm:
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Some terms from complexity theory

e Polynomial time algorithm:
An algorithm A that on input of length n takes
time ta < poly(n) to complete. Here poly(n) means

3d : ta € O(n?)

There exists a d such that time ta is in O(n%).
e Probabilistic polynomial time (PPT) algorithm:
Randomized algorithm taking polynomial time whose answer
is correct with some probability.
o Negligible: very, very small
A function f(n) is negligible in n if

dnc > 0:Vn > nc: f(n) < 1/poly(n).
There exists an n. > 0 such that for all n > n. it holds that
f(n) < 1/poly(n).

These are asymptotic statements, like O, so describe behavior as

parameter n grows.
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Cryptographic hash functions - practical definition

A cryptographic hash function H maps bit strings of arbitrary
length to bit strings of length n.

H:{0,1}* — {0,1}"
The input space might be further restricted.
A secure hash function satisfies the following 3 properties:
Preimage resistance: Given y € H({0,1}*) finding x € {0,1}* with
H(x) = y is hard.
y is fixed and known to be the image of some x € {0,1}*. Typically there are
many such x, but it should be computationally hard to find any.
Second preimage resistance: Given x € {0,1}* finding x’ € {0, 1}*
with x # x” and H(x") = H(x) is hard.
x € {0,1}* fixes H(x) = y. Typically there are many other x’ # x with the
same image, but it should be computationally hard to find any.
Collision resistance: Finding x, x" € {0,1}* with x # x" and
H(x") = H(x) is hard.
This property leaves full flexibility to choose any target y. Nevertheless it

should be computationally hard to find any x # x’ with the same image.
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Towards a formal treatment of hash functions

A cryptographic hash function H maps bit strings of arbitrary
length to bit strings of length n.

H:{0,1}* — {0,1}"
The input space might be further restricted.
A secure hash function satisfies the following 3 properties:
Preimage resistance: Given y € H({0,1}*) finding x € {0,1}* with
H(x) = y is hard.

Second preimage resistance: Given x € {0,1}* finding x’ € {0,1}*
with x # x" and H(x") = H(x) is hard.

Collision resistance: Finding x,x’ € {0,1}* with x # x” and
H(x") = H(x) is hard.
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Towards a formal treatment of hash functions

A cryptographic hash function H maps bit strings of arbitrary
length to bit strings of length n.

H:{0,1}* — {0,1}"
The input space might be further restricted.
A secure hash function satisfies the following 3 properties:
Preimage resistance: Given y € H({0,1}*) finding x € {0,1}* with
H(x) = y is hard.
Formally: there does not exist an attack faster than O(2") that
given y € H({0,1}*) finds x with H(x) = y.
Second preimage resistance: Given x € {0,1}* finding x’ € {0,1}*
with x # x" and H(x") = H(x) is hard.
Formally: there does not exist an attack faster than O(2") that
given x € {0,1}* finds x’ € {0,1}* with x # x” and H(x) = H(x).
Collision resistance: Finding x,x’ € {0,1}* with x # x” and
H(x") = H(x) is hard.
Collisions exist. There exists an attack that outputs a collision,
even if we do not know how to find it. Formalize ignorance?
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Formal treatment of hash functions |
Make statements about families of hash functions or keyed hash

functions. Note the “key” is public and not under the control of
the attacker.
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Formal treatment of hash functions |

Make statements about families of hash functions or keyed hash
functions. Note the “key” is public and not under the control of

the attacker.

A keyed cryptographic hash function H maps a key of length n and
a bit string of length £(n) to a bit string of length n.

H:{0,1}" x {0,1}" — {0,1}"
Preimage resistance: For any PPT algorithm A
Prik <& {0,1}", x g {0, 1}y « H(k,x),x" < A(k,y) : H(k,x') = y]
is negligible in n.

For any PPT algorithm A the probability that given randomly chosen
k € {0,1}" and given y = H(k, x) for some randomly chosen x € {0, 1}*"

the algorithm A outputs x’ € {0,1}" with H(k,x") = y is negligible in n.

This property is often denoted PRE.
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Formal treatment of hash functions Il
Second preimage resistance: For any PPT algorithm A

Prik <r {0,1}", x g {0, 13" X"« A(k,x) : H(k,x") = H(k, x)Ax" # x]
is negligible in n.

For any PPT algorithm A the probability that given randomly chosen
k € {0,1}" and x € {0,1}*" the algorithm outputs x” € {0, 1} with
H(k,x") = H(k, x) and x’ # x is negligible in n.

This property is often denoted SPR.
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Second preimage resistance: For any PPT algorithm A

Prik <r {0,1}", x g {0, 13" X"« A(k,x) : H(k,x") = H(k, x)Ax" # x]
is negligible in n.

For any PPT algorithm A the probability that given randomly chosen
k € {0,1}" and x € {0,1}*" the algorithm outputs x” € {0, 1} with
H(k,x") = H(k, x) and x’ # x is negligible in n.

This property is often denoted SPR.

Collision resistance: For any PPT algorithm A

Prlk <—g {0,1}", (x,x") <= A(k) : H(k,x") = H(k,x) and x" # x]
is negligible in n.

For any PPT algorithm A the probability that given randomly chosen

k € {0,1}" the algorithm outputs x, x’ € {0, 1}" with H(k,x") = H(k, x)

and x’ # x is negligible in n.

This property is often denoted CR.
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