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Motivation

Want a short handle to some larger piece of data such that:

• even a small change in the large data leads to a very different
handle; handle can serve as fingerprint

• it (probably uniquely) identifies the larger piece of data;
(think of PGP fingerprints)

• one cannot compute the fingerprint without knowing all the
data; fingerprint forms a commitment to the data.

• the fingerprints are (close to) uniformly distributed; (can use
them – or parts thereof – to assign data to buckets or next
steps to random walks.)

• one cannot reconstruct the data from the fingerprint.
(at least sometimes that’s desired.)
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Cryptographic hash functions - practical definition
A cryptographic hash function H maps bit strings of arbitrary
length to bit strings of length n.

H : {0, 1}∗ → {0, 1}n

The input space might be further restricted.

A secure hash function satisfies the following 3 properties:

Preimage resistance: Given y ∈ H({0, 1}∗) finding x ∈ {0, 1}∗ with
H(x) = y is hard.

y is fixed and known to be the image of some x ∈ {0, 1}∗. Typically there are

many such x , but it should be computationally hard to find any.

Second preimage resistance: Given x ∈ {0, 1}∗ finding x ′ ∈ {0, 1}∗
with x 6= x ′ and H(x ′) = H(x) is hard.

x ∈ {0, 1}∗ fixes H(x) = y . Typically there are many other x ′ 6= x with the

same image, but it should be computationally hard to find any.

Collision resistance: Finding x , x ′ ∈ {0, 1}∗ with x 6= x ′ and
H(x ′) = H(x) is hard.

This property leaves full flexibility to choose any target y . Nevertheless it
should be computationally hard to find any x 6= x ′ with the same image.
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Generic hardness

If the output of H is distributed uniformly then
each y has a 1/2n chance of being the image.

Hence it takes about 2n calls to H
to find a preimage.

The same approach works to find second preimages.
The probability that same x is found is negligible.

Hence it takes about 2n calls to H to find a second preimage.

The birthday paradox implies that if one draws elements at random
from a set of m elements, then with 50% probability one has
picked one element twice after about

√
πm/2 picks.

Hence it takes O(2n/2) calls to H to find a collision.

This number is much lower than the other two because there is no
restriction on the target.

These are the highest possible complexities one can hope for.
Some hash functions require far fewer operation to break.
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Practical use hash functions
Hash functions are often called the Swiss-army knife of
cryptography. They are used in

• key-derivation functions

• public-key signatures

• symmetric-key authentication

Cryptographic libraries support several hash functions:

• In use and probably OK: SHA-256, SHA-384, SHA-512;
SHA-3, SHAKE, other SHA-3 finalists.

• SHA-1 is still in use for fingerprints, e.g. for git and PGP.
Collisions were computed in 2017 https://shattered.io/.
Practical attack (chosen prefix collision) in 2020
https://sha-mbles.github.io/

• MD5: collisions (2004) and chosen-prefix collisions (2008).
Flame malware (2012) used MD5 collision to create signature
on fake Windows update.

• MD4: collisions (1995), very efficient collisions (2004).
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