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Diffie–Hellman key exchange

I 1976 Diffie and Hellman introduce public-key cryptography.

I To use it, standardize group G and g ∈ G .
Everybody knows G and g as well as how to compute in G .

I Warning #1: Many G are unsafe!

I G = (Q, ·), g = 2, hA = 65536 means a = 16.
In general, just check bitlength.

I G = (Fp,+), i.e., A sends hA ≡ ag mod p.
Can recover a using XGCD.

I Diffie and Hellman suggested G = (F∗p, ·) with g a primitive
element, i.e., a generator of the whole group.

I Used in practice G ⊂ (F∗p, ·) with g an element of large prime order.

I Miller and Koblitz suggested G = E (Fp,+), i,e., points on an
elliptic curve over a finite field with addition of points.

I Used in practice G ⊂ E (Fp,+), i,e., prime-order subgroup of points
on an elliptic curve over a finite field with addition of points.
We have seen how to compute + on different curve shapes,
will now study security.
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ElGamal encryption
KeyGen:

1. Pick random 0 < a < |G |.
2. Compute hA = g a.
3. Output public key hA, private key a.

Encryption:

1. Pick random k , compute r = gk .
2. Encrypt m ∈ G as C = hkA ·m.
3. Send (r ,C ).

Decryption:

1. Compute m = C/(r a)

= (g a)k ·m/g ak .

I Positives:
I Randomized DL-based encryption.
I Is re-randomizable: (rg k′ ,Chk′

A ) decrypts to same m as (r ,C).
I Is homomorphic.

I Downsides:
I Requires m ∈ G .
I Is homomorphic. Not OW-CCA II secure.
I Typically all we want is to share a symmetric key.
I Beware of subgroups!
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Security reduction – IND-CPA as hard as DDHP
Attacker goal
Break indistinguishability (IND),
i.e., learn which of two attacker-chosen messages m0,m1 was encrypted
in C = Encpk(mi ) (beyond 50% chance of guessing.)

We get (r ,C ) = (gk , hkAmi ), need to decide if i = 0 or i = 1.

Can compute C/m0.

If i = 0: (hA, r ,C/m0) = (g a, gk , g ak) is a valid DH triple.

If i = 1: (hA, r ,C/m0) = (g a, gk , g akm1/m0) is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP:
Given (g a, gb, g c) figure out whether c = ab.
Give hA = g a to A as public key.
Upon input of m0,m1, pick random i ∈ {0, 1}, send (r ,C ) = (gb, g cmi ).

If A’s reply matches i , output “valid triple”; else output “’not valid”.

For valid triple, inputs match IND-CPA game. Else A must guess.

If A has advantage ε at IND-CPA we get advantage ε/2 at DDHP.

Tanja Lange DL systems over finite fields I 4



Security reduction – IND-CPA as hard as DDHP
Attacker goal
Break indistinguishability (IND),
i.e., learn which of two attacker-chosen messages m0,m1 was encrypted
in C = Encpk(mi ) (beyond 50% chance of guessing.)

We get (r ,C ) = (gk , hkAmi ), need to decide if i = 0 or i = 1.

Can compute C/m0.

If i = 0: (hA, r ,C/m0) = (g a, gk , g ak) is a valid DH triple.

If i = 1: (hA, r ,C/m0) = (g a, gk , g akm1/m0) is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP:
Given (g a, gb, g c) figure out whether c = ab.
Give hA = g a to A as public key.
Upon input of m0,m1, pick random i ∈ {0, 1}, send (r ,C ) = (gb, g cmi ).

If A’s reply matches i , output “valid triple”; else output “’not valid”.

For valid triple, inputs match IND-CPA game. Else A must guess.

If A has advantage ε at IND-CPA we get advantage ε/2 at DDHP.

Tanja Lange DL systems over finite fields I 4



Security reduction – IND-CPA as hard as DDHP
Attacker goal
Break indistinguishability (IND),
i.e., learn which of two attacker-chosen messages m0,m1 was encrypted
in C = Encpk(mi ) (beyond 50% chance of guessing.)

We get (r ,C ) = (gk , hkAmi ), need to decide if i = 0 or i = 1.

Can compute C/m0.

If i = 0: (hA, r ,C/m0) = (g a, gk , g ak) is a valid DH triple.

If i = 1: (hA, r ,C/m0) = (g a, gk , g akm1/m0) is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP:
Given (g a, gb, g c) figure out whether c = ab.
Give hA = g a to A as public key.
Upon input of m0,m1, pick random i ∈ {0, 1}, send (r ,C ) = (gb, g cmi ).

If A’s reply matches i , output “valid triple”; else output “’not valid”.

For valid triple, inputs match IND-CPA game. Else A must guess.

If A has advantage ε at IND-CPA we get advantage ε/2 at DDHP.

Tanja Lange DL systems over finite fields I 4



Security reduction – IND-CPA as hard as DDHP
Attacker goal
Break indistinguishability (IND),
i.e., learn which of two attacker-chosen messages m0,m1 was encrypted
in C = Encpk(mi ) (beyond 50% chance of guessing.)

We get (r ,C ) = (gk , hkAmi ), need to decide if i = 0 or i = 1.

Can compute C/m0.

If i = 0: (hA, r ,C/m0) = (g a, gk , g ak) is a valid DH triple.

If i = 1: (hA, r ,C/m0) = (g a, gk , g akm1/m0) is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP:
Given (g a, gb, g c) figure out whether c = ab.
Give hA = g a to A as public key.
Upon input of m0,m1, pick random i ∈ {0, 1}, send (r ,C ) = (gb, g cmi ).

If A’s reply matches i , output “valid triple”; else output “’not valid”.

For valid triple, inputs match IND-CPA game. Else A must guess.

If A has advantage ε at IND-CPA we get advantage ε/2 at DDHP.

Tanja Lange DL systems over finite fields I 4



Security reduction – IND-CPA as hard as DDHP
Attacker goal
Break indistinguishability (IND),
i.e., learn which of two attacker-chosen messages m0,m1 was encrypted
in C = Encpk(mi ) (beyond 50% chance of guessing.)

We get (r ,C ) = (gk , hkAmi ), need to decide if i = 0 or i = 1.

Can compute C/m0.

If i = 0: (hA, r ,C/m0) = (g a, gk , g ak) is a valid DH triple.

If i = 1: (hA, r ,C/m0) = (g a, gk , g akm1/m0) is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP:
Given (g a, gb, g c) figure out whether c = ab.
Give hA = g a to A as public key.
Upon input of m0,m1, pick random i ∈ {0, 1}, send (r ,C ) = (gb, g cmi ).

If A’s reply matches i , output “valid triple”; else output “’not valid”.

For valid triple, inputs match IND-CPA game. Else A must guess.

If A has advantage ε at IND-CPA we get advantage ε/2 at DDHP.

Tanja Lange DL systems over finite fields I 4



Security reduction – IND-CPA as hard as DDHP
Attacker goal
Break indistinguishability (IND),
i.e., learn which of two attacker-chosen messages m0,m1 was encrypted
in C = Encpk(mi ) (beyond 50% chance of guessing.)

We get (r ,C ) = (gk , hkAmi ), need to decide if i = 0 or i = 1.

Can compute C/m0.

If i = 0: (hA, r ,C/m0) = (g a, gk , g ak) is a valid DH triple.

If i = 1: (hA, r ,C/m0) = (g a, gk , g akm1/m0) is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP:
Given (g a, gb, g c) figure out whether c = ab.
Give hA = g a to A as public key.
Upon input of m0,m1, pick random i ∈ {0, 1}, send (r ,C ) = (gb, g cmi ).

If A’s reply matches i , output “valid triple”; else output “’not valid”.

For valid triple, inputs match IND-CPA game. Else A must guess.

If A has advantage ε at IND-CPA we get advantage ε/2 at DDHP.

Tanja Lange DL systems over finite fields I 4



Security reduction – IND-CPA as hard as DDHP
Attacker goal
Break indistinguishability (IND),
i.e., learn which of two attacker-chosen messages m0,m1 was encrypted
in C = Encpk(mi ) (beyond 50% chance of guessing.)

We get (r ,C ) = (gk , hkAmi ), need to decide if i = 0 or i = 1.

Can compute C/m0.

If i = 0: (hA, r ,C/m0) = (g a, gk , g ak) is a valid DH triple.

If i = 1: (hA, r ,C/m0) = (g a, gk , g akm1/m0) is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP:
Given (g a, gb, g c) figure out whether c = ab.
Give hA = g a to A as public key.
Upon input of m0,m1, pick random i ∈ {0, 1}, send (r ,C ) = (gb, g cmi ).

If A’s reply matches i , output “valid triple”; else output “’not valid”.

For valid triple, inputs match IND-CPA game. Else A must guess.

If A has advantage ε at IND-CPA we get advantage ε/2 at DDHP.

Tanja Lange DL systems over finite fields I 4



Security reduction – IND-CPA as hard as DDHP
Attacker goal
Break indistinguishability (IND),
i.e., learn which of two attacker-chosen messages m0,m1 was encrypted
in C = Encpk(mi ) (beyond 50% chance of guessing.)

We get (r ,C ) = (gk , hkAmi ), need to decide if i = 0 or i = 1.

Can compute C/m0.

If i = 0: (hA, r ,C/m0) = (g a, gk , g ak) is a valid DH triple.

If i = 1: (hA, r ,C/m0) = (g a, gk , g akm1/m0) is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP:
Given (g a, gb, g c) figure out whether c = ab.
Give hA = g a to A as public key.
Upon input of m0,m1, pick random i ∈ {0, 1}, send (r ,C ) = (gb, g cmi ).

If A’s reply matches i , output “valid triple”; else output “’not valid”.

For valid triple, inputs match IND-CPA game. Else A must guess.

If A has advantage ε at IND-CPA we get advantage ε/2 at DDHP.

Tanja Lange DL systems over finite fields I 4



Security reduction – IND-CPA as hard as DDHP
Attacker goal
Break indistinguishability (IND),
i.e., learn which of two attacker-chosen messages m0,m1 was encrypted
in C = Encpk(mi ) (beyond 50% chance of guessing.)

We get (r ,C ) = (gk , hkAmi ), need to decide if i = 0 or i = 1.

Can compute C/m0.

If i = 0: (hA, r ,C/m0) = (g a, gk , g ak) is a valid DH triple.

If i = 1: (hA, r ,C/m0) = (g a, gk , g akm1/m0) is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP:
Given (g a, gb, g c) figure out whether c = ab.
Give hA = g a to A as public key.
Upon input of m0,m1, pick random i ∈ {0, 1}, send (r ,C ) = (gb, g cmi ).

If A’s reply matches i , output “valid triple”; else output “’not valid”.

For valid triple, inputs match IND-CPA game. Else A must guess.

If A has advantage ε at IND-CPA we get advantage ε/2 at DDHP.

Tanja Lange DL systems over finite fields I 4



Security reduction – IND-CPA as hard as DDHP
Attacker goal
Break indistinguishability (IND),
i.e., learn which of two attacker-chosen messages m0,m1 was encrypted
in C = Encpk(mi ) (beyond 50% chance of guessing.)

We get (r ,C ) = (gk , hkAmi ), need to decide if i = 0 or i = 1.

Can compute C/m0.

If i = 0: (hA, r ,C/m0) = (g a, gk , g ak) is a valid DH triple.

If i = 1: (hA, r ,C/m0) = (g a, gk , g akm1/m0) is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP:
Given (g a, gb, g c) figure out whether c = ab.
Give hA = g a to A as public key.
Upon input of m0,m1, pick random i ∈ {0, 1}, send (r ,C ) = (gb, g cmi ).

If A’s reply matches i , output “valid triple”; else output “’not valid”.

For valid triple, inputs match IND-CPA game. Else A must guess.

If A has advantage ε at IND-CPA we get advantage ε/2 at DDHP.

Tanja Lange DL systems over finite fields I 4



KEM–DEM framework
Formalize idea: use public-key system to transport symmetric key.

Data-encapsulation mechanism (DEM).
This is the regular symmetric-key authenticated encryption.

Key-encapsulation mechanism (KEM)

1. KeyGen: generate a public-key private-key pair.

2. Encapsulation: take public key, produce ciphertext and shared key.

3. Decapsulation: take private key and a ciphertext, produce shared
key.

This formalizes nicely the semi-static DH system; here the F∗p version:
Encapsulation:

1. Pick random 0 < r < |G |.
2. Compute h = g r .

3. Compute K = KDF(hrA).

4. Output (h,K ).

Decapsulation:

1. Compute K ′ = KDF(ha).

2. Output K ′. Note K ′ = KDF(ha) = KDF((g r )a) = KDF(hrA) = K .
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