DL systems over finite fields I ElGamal encryption and KEM-DEM framework

Tanja Lange

Eindhoven University of Technology

2MMC10 - Cryptology

Diffie-Hellman key exchange

- ▶ 1976 Diffie and Hellman introduce public-key cryptography.
- ► To use it, standardize group G and g ∈ G. Everybody knows G and g as well as how to compute in G.
- ▶ Warning #1: Many G are unsafe!
 - $G = (\mathbf{Q}, \cdot), g = 2, h_A = 65536$ means a = 16. In general, just check bitlength.
 - G = (F_p, +), i.e., A sends h_A ≡ ag mod p. Can recover a using XGCD.
- ▶ Diffie and Hellman suggested G = (F^{*}_p, ·) with g a primitive element, i.e., a generator of the whole group.
- ▶ Used in practice $G \subset (\mathbf{F}_p^*, \cdot)$ with g an element of large prime order.
- ► Miller and Koblitz suggested G = E(F_p, +), i.e., points on an elliptic curve over a finite field with addition of points.
- Used in practice G ⊂ E(F_p, +), i.e., prime-order subgroup of points on an elliptic curve over a finite field with addition of points. We have seen how to compute + on different curve shapes, will now study security.

ElGamal encryption

KeyGen:

- 1. Pick random 0 < a < |G|.
- 2. Compute $h_A = g^a$.
- 3. Output public key h_A , private key a.

Encryption:

- 1. Pick random k, compute $r = g^k$.
- 2. Encrypt $m \in G$ as $C = h_A^k \cdot m$.
- 3. Send (r, C).

Decryption:

1. Compute $m = C/(r^a)$

ElGamal encryption

KeyGen:

- 1. Pick random 0 < a < |G|.
- 2. Compute $h_A = g^a$.
- 3. Output public key h_A , private key a.

Encryption:

- 1. Pick random k, compute $r = g^k$.
- 2. Encrypt $m \in G$ as $C = h_A^k \cdot m$.
- 3. Send (r, C).

Decryption:

- 1. Compute $m = C/(r^a) = (g^a)^k \cdot m/g^{ak}$.
- Positives:
 - Randomized DL-based encryption.
 - ▶ Is re-randomizable: $(rg^{k'}, Ch_A^{k'})$ decrypts to same *m* as (r, C).
 - Is homomorphic.

ElGamal encryption

KeyGen:

- 1. Pick random 0 < a < |G|.
- 2. Compute $h_A = g^a$.
- 3. Output public key h_A , private key a.

Encryption:

- 1. Pick random k, compute $r = g^k$.
- 2. Encrypt $m \in G$ as $C = h_A^k \cdot m$.
- 3. Send (*r*, *C*).

Decryption:

- 1. Compute $m = C/(r^a) = (g^a)^k \cdot m/g^{ak}$.
- Positives:
 - Randomized DL-based encryption.
 - ▶ Is re-randomizable: $(rg^{k'}, Ch_A^{k'})$ decrypts to same *m* as (r, C).
 - Is homomorphic.
- Downsides:
 - Requires $m \in G$.
 - Is homomorphic. Not OW-CCA II secure.
 - Typically all we want is to share a symmetric key.
 - Beware of subgroups!

Attacker goal

Break indistinguishability (IND),

i.e., learn which of two attacker-chosen messages m_0, m_1 was encrypted in $C = \text{Enc}_{pk}(m_i)$ (beyond 50% chance of guessing.)

Attacker goal

Break indistinguishability (IND),

i.e., learn which of two attacker-chosen messages m_0, m_1 was encrypted in $C = \text{Enc}_{pk}(m_i)$ (beyond 50% chance of guessing.)

We get $(r, C) = (g^k, h_A^k m_i)$, need to decide if i = 0 or i = 1.

Attacker goal

Break indistinguishability (IND),

i.e., learn which of two attacker-chosen messages m_0, m_1 was encrypted in $C = \text{Enc}_{pk}(m_i)$ (beyond 50% chance of guessing.)

We get $(r, C) = (g^k, h_A^k m_i)$, need to decide if i = 0 or i = 1.

Can compute C/m_0 .

Attacker goal

Break indistinguishability (IND),

i.e., learn which of two attacker-chosen messages m_0, m_1 was encrypted in $C = \text{Enc}_{pk}(m_i)$ (beyond 50% chance of guessing.)

We get $(r, C) = (g^k, h_A^k m_i)$, need to decide if i = 0 or i = 1.

Can compute C/m_0 .

If i = 0: $(h_A, r, C/m_0) = (g^a, g^k, g^{ak})$ is a valid DH triple.

Attacker goal

Break indistinguishability (IND),

i.e., learn which of two attacker-chosen messages m_0, m_1 was encrypted in $C = \text{Enc}_{pk}(m_i)$ (beyond 50% chance of guessing.)

We get $(r, C) = (g^k, h_A^k m_i)$, need to decide if i = 0 or i = 1.

Can compute C/m_0 .

If i = 0: $(h_A, r, C/m_0) = (g^a, g^k, g^{ak})$ is a valid DH triple.

If i = 1: $(h_A, r, C/m_0) = (g^a, g^k, g^{ak}m_1/m_0)$ is not a valid DH triple.

Attacker goal

Break indistinguishability (IND),

i.e., learn which of two attacker-chosen messages m_0, m_1 was encrypted in $C = \text{Enc}_{pk}(m_i)$ (beyond 50% chance of guessing.)

We get $(r, C) = (g^k, h_A^k m_i)$, need to decide if i = 0 or i = 1.

Can compute C/m_0 .

If i = 0: $(h_A, r, C/m_0) = (g^a, g^k, g^{ak})$ is a valid DH triple.

If i = 1: $(h_A, r, C/m_0) = (g^a, g^k, g^{ak}m_1/m_0)$ is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Attacker goal

Break indistinguishability (IND),

i.e., learn which of two attacker-chosen messages m_0, m_1 was encrypted in $C = \text{Enc}_{pk}(m_i)$ (beyond 50% chance of guessing.)

We get $(r, C) = (g^k, h_A^k m_i)$, need to decide if i = 0 or i = 1.

Can compute C/m_0 .

If i = 0: $(h_A, r, C/m_0) = (g^a, g^k, g^{ak})$ is a valid DH triple.

If i = 1: $(h_A, r, C/m_0) = (g^a, g^k, g^{ak}m_1/m_0)$ is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP: Given (g^a, g^b, g^c) figure out whether c = ab. Give $h_A = g^a$ to A as public key. Upon input of m_0, m_1 , pick random $i \in \{0, 1\}$, send $(r, C) = (g^b, g^c m_i)$.

Attacker goal

Break indistinguishability (IND),

i.e., learn which of two attacker-chosen messages m_0, m_1 was encrypted in $C = \text{Enc}_{pk}(m_i)$ (beyond 50% chance of guessing.)

We get $(r, C) = (g^k, h_A^k m_i)$, need to decide if i = 0 or i = 1.

Can compute C/m_0 .

If i = 0: $(h_A, r, C/m_0) = (g^a, g^k, g^{ak})$ is a valid DH triple.

If i = 1: $(h_A, r, C/m_0) = (g^a, g^k, g^{ak}m_1/m_0)$ is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP: Given (g^a, g^b, g^c) figure out whether c = ab. Give $h_A = g^a$ to A as public key. Upon input of m_0, m_1 , pick random $i \in \{0, 1\}$, send $(r, C) = (g^b, g^c m_i)$. If A's reply matches *i*, output "valid triple"; else output "not valid".

Attacker goal

Break indistinguishability (IND),

i.e., learn which of two attacker-chosen messages m_0, m_1 was encrypted in $C = \text{Enc}_{pk}(m_i)$ (beyond 50% chance of guessing.)

We get $(r, C) = (g^k, h_A^k m_i)$, need to decide if i = 0 or i = 1.

Can compute C/m_0 .

If i = 0: $(h_A, r, C/m_0) = (g^a, g^k, g^{ak})$ is a valid DH triple.

If i = 1: $(h_A, r, C/m_0) = (g^a, g^k, g^{ak}m_1/m_0)$ is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP: Given (g^a, g^b, g^c) figure out whether c = ab. Give $h_A = g^a$ to A as public key. Upon input of m_0, m_1 , pick random $i \in \{0, 1\}$, send $(r, C) = (g^b, g^c m_i)$. If A's reply matches *i*, output "valid triple"; else output "not valid". For valid triple, inputs match IND-CPA game. Else A must guess.

Attacker goal

Break indistinguishability (IND),

i.e., learn which of two attacker-chosen messages m_0, m_1 was encrypted in $C = \text{Enc}_{pk}(m_i)$ (beyond 50% chance of guessing.)

We get $(r, C) = (g^k, h_A^k m_i)$, need to decide if i = 0 or i = 1.

Can compute C/m_0 .

If i = 0: $(h_A, r, C/m_0) = (g^a, g^k, g^{ak})$ is a valid DH triple.

If i = 1: $(h_A, r, C/m_0) = (g^a, g^k, g^{ak}m_1/m_0)$ is not a valid DH triple.

If we can solve DDHP we can break IND-CPA.

Use IND-CPA attacker A to break DDHP: Given (g^a, g^b, g^c) figure out whether c = ab. Give $h_A = g^a$ to A as public key. Upon input of m_0, m_1 , pick random $i \in \{0, 1\}$, send $(r, C) = (g^b, g^c m_i)$. If A's reply matches *i*, output "valid triple"; else output "not valid". For valid triple, inputs match IND-CPA game. Else A must guess. If A has advantage ε at IND-CPA we get advantage $\varepsilon/2$ at DDHP.

KEM–DEM framework

Formalize idea: use public-key system to transport symmetric key.

Data-encapsulation mechanism (DEM).

This is the regular symmetric-key authenticated encryption.

Key-encapsulation mechanism (KEM)

- 1. KeyGen: generate a public-key private-key pair.
- 2. Encapsulation: take public key, produce ciphertext and shared key.
- 3. Decapsulation: take private key and a ciphertext, produce shared key.

KEM–DEM framework

Formalize idea: use public-key system to transport symmetric key.

Data-encapsulation mechanism (DEM).

This is the regular symmetric-key authenticated encryption.

Key-encapsulation mechanism (KEM)

- 1. KeyGen: generate a public-key private-key pair.
- 2. Encapsulation: take public key, produce ciphertext and shared key.
- 3. Decapsulation: take private key and a ciphertext, produce shared key.

This formalizes nicely the semi-static DH system; here the \mathbf{F}_{p}^{*} version: Encapsulation:

- 1. Pick random 0 < r < |G|.
- 2. Compute $h = g^r$.
- 3. Compute $K = KDF(h_A^r)$.
- 4. Output (*h*, *K*).

Decapsulation:

- 1. Compute $K' = KDF(h^a)$.
- 2. Output K'.

KEM–DEM framework

Formalize idea: use public-key system to transport symmetric key.

Data-encapsulation mechanism (DEM).

This is the regular symmetric-key authenticated encryption.

Key-encapsulation mechanism (KEM)

- 1. KeyGen: generate a public-key private-key pair.
- 2. Encapsulation: take public key, produce ciphertext and shared key.
- 3. Decapsulation: take private key and a ciphertext, produce shared key.

This formalizes nicely the semi-static DH system; here the \mathbf{F}_{p}^{*} version: Encapsulation:

- 1. Pick random 0 < r < |G|.
- 2. Compute $h = g^r$.
- 3. Compute $K = KDF(h_A^r)$.
- 4. Output (*h*, *K*).

Decapsulation:

- 1. Compute $K' = KDF(h^a)$.
- 2. Output K'. Note $K' = KDF(h^a) = KDF((g^r)^a) = KDF(h_A^r) = K$.