
Cryptography, exercise sheet 7 for 19 Oct 2021

We will work through these exercises on wonder.me; you can find the URL for the room
in the Canvas announcement and in Zulip chat under the topic ”Wonder session” in the
“general” stream. These are exercises to challenge your understanding of the lectures you
have watched already, in particular lectures I – VII about symmetric-key cryptography.
These are not for homework.

You can call one of us over by choosing “invite to circle”. Please note, though, that if we are
in another circle busy talking we will not come right away and invitations expire quickly. So
pick one of us who is in the TA corner, thus not occupied.

You can use Sage or other computer-algebra systems for the computations but do not use it
to solve the exercises by brute force; use the algorithms you learned.

This sheet might be too much for 90 min; you will encounter the last exercise again when you
check out old exams, this is from the first exam 2016.

1. You learn that I sent ciphertext
c = 146825627869398061752588778309232041959671041598158622 to a user with RSA
public key (e, n) = (3, 529774210762246675161318616746995617835565246251635147)
and that this was the result of a form which sends a stereotyped message
myfavoritenumberis in base 36, where the empty spaces indicate 6 unknown char-
acters. Use LLL to recover those 6 characters.
Note that you are not guaranteed to succeed with the first output of LLL. Also note
that you can (and should) check your solution.

2. Show that ElGamal encryption is re-randomizable, i.e., show that (r, C) and (rgk
′
, Chk

′
A)

decrypt to the same message for any k′.

3. Show that ElGamal encryption is homomorphic.

4. Eve learns that Bob’s random-number generator is broken (details below) and she learns
the decryption m1 of (r1, C1).

(a) Assume that Bob uses the same nonce k for all encryptions. Show how Eve can
decrypt (r2, C2).

(b) Assume that Bob increments his k for each encryption, i.e., that ki+1 = k1 + i.
Show how Eve can decrypt (ri, Ci).

5. 13 ∈ IF∗1321 generates a group of order 1320 = 23 · 3 · 5 · 11. Solve the discrete logarithm
problem g = 13, h = 320 by using the Pohlig-Hellman attack, i.e. find an integer
0 < a < 1320 such that h = ga by computing first a modulo 2, 4, 8, 3, 5, and 11 and then
computing a using the Chinese Remainder Theorem.

6. Use factor base F = {2, 3, 5, 7, 11, 13} to solve the DLP h = 281, g = 2, in IF∗1019.
I.e. pick random powers of g = 2, check whether they factor into products of powers
of 2,3,5,7,11, and 13; if so, add a relation to a matrix. The columns of the matrix
correspond to the discrete logs of 2,3, 5,7,11, and 13. Once you have 6 rows try to solve
the matrix; note that these computations take place modulo the group order 1018. It
might be that some of the rows are linearly dependent, in that case you need to generate
another relation. Once you have all discrete logs of the primes in the factor base, check

whether h is smooth and if not find a hgi (for some i) which is smooth. You only need to
document the successful choices of i or submit a working program that has comments.

Here are two examples. Let aj = logg j. 2291 ≡ 52 mod 1019; over the integers 52 =
22 · 13, so we include the relation 291 ≡ 2a2 + a13 mod 1018. Note that you can run
into difficulties inverting modulo 1018 since it is not prime. E.g. 2658 ≡ 729 mod 1019;
over the integers 729 = 36, so we include the relation 658 ≡ 6a3 mod 1018 but 6 is
not invertible modulo 1018 and we can only determine a3 ≡ 449 mod 509 and need to
test whether a3 = 449 or a3 = 449 + 509. Here 2449 ≡ 1016 mod 1019 and 2449+509 ≡
3 mod 1019, thus a3 = 958. [Now you only need 5 more.]

7. Show that verification succeeds for honestly generated signatures in DSA.

8. This exercise is about Diffie-Hellman (DH) key exchange in finite fields. As we have
seen in class, index calculus attacks on the DLP in IF∗p are faster than Pollard’s rho
attack, so implementations use smaller subgroups or limit the exponent.

DSA typically specifies three parameters (p, `, g): p is the modulus, meaning that the
group IF∗p is used, and ` is the order of the subgroup generated by g. These groups can
also be used in DH applications. The implementer is expected to use g as the generator
and to choose secret keys smaller than `.

(a) Alice sends Bob a request to use her preferred parameter set (234917, 281, 19452).
However, Bob’s library expects only two arguments and reads Alice’s parameters
as p = 234917 and g = 281. Bob uses a secret b < 400 and sends his DH share
hb = gb = 92646. Compute Bob’s b without resorting to a brute force attack.
Verify your solution.
Hint: You might find the factorization of p− 1 = 22 · 11 · 19 ·281 useful. Note that
this g has order 117458 = 2 · 11 · 19 · 281.
Hint 2: You know everything to run this attack.

(b) Alice sends Bob a request to use her preferred parameter set (234977, 1049, 202367).
However, Bob’s library expects only two arguments and reads Alice’s parameters
as p = 234977 and g = 1049. Bob uses a secret b < 400 and sends his DH share
hb = gb = 7409. Compute Bob’s b without resorting to a brute force attack.
Verify your solution.
Hint: You might find the factorization of p − 1 = 25 · 7 · 1049 useful. Note that
this g has order 117488 = 24 · 7 · 1049.

(c) Eve knows that Charlie’s server uses group 23 from RFC 5114, i.e., a 2048-bit
prime p to be used with a subgroup of prime order `, where ` has 224-bits. The
factorization of (p − 1)/` = 2 · 32 · 5 · 43 · 73 · 157 · 387493 · 605921 · 742327609 ·
5213881177 · 112486462861 · 3528910760717 ·C489, where C489 is the product of 3
larger primes. Charlie’s server uses static DH, that means the same value of c for
all connections. Eve can easily see this by Charlie offering the same hc = gc for
all connections. This means, that Eve can send Charlie input values h = ge and
Charlie will reply with an AES encryption of ACKNOWLEDGE under key hash(hc).

Furthermore, Eve knows what software Charlie’s server uses and she knows that
it does not verify the order of the input values it receives from users.

Describe an attack with which Eve can compute Charlie’s secret c in time less than
264. State the number of queries, i.e. the number of values hi that Eve sends, and

describe how she should choose these values hi? How much computation does Eve
need to do? Note that Charlie’s c has 224 bits.

