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EdDSA — Ed25519
Let p = 2255 — 19, d = —121665/121666 and
E:—x?>4y? =1+ dx?y2.
Base point P has prime order ¢, |E(F,)| = 8¢.

Scheme follows Schnorr, with some improvements:

» Put h = H(R, Q, m) to reduce multi-target attacks.

» Verify 8sP = 8R + 8hQ to deal with cofactor (can also check
without 8).

» Choose r pseudorandomly to avoid issues with bad
randomness.
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EdDSA — Ed25519
Let p =225 — 19, d = —121665/121666 and

E:—x?>4y? =1+ dx?y2.
Base point P has prime order ¢, |E(F,)| = 8¢.

Scheme follows Schnorr, with some improvements:

» Put h = H(R, Q, m) to reduce multi-target attacks.

» Verify 8sP = 8R + 8hQ to deal with cofactor (can also check
without 8).

» Choose r pseudorandomly to avoid issues with bad
randomness.

» Signing equation ensures sP = R+ hQ = 8sP = 8R + 8hQ.
However, 8sP = 8R + 8hQ does not imply sP = R + hQ:
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EdDSA — Ed25519
Let p =225 — 19, d = —121665/121666 and

E:—x?>4y? =1+ dx?y2.
Base point P has prime order ¢, |E(F,)| = 8¢.

Scheme follows Schnorr, with some improvements:

» Put h = H(R, Q, m) to reduce multi-target attacks.

» Verify 8sP = 8R + 8hQ to deal with cofactor (can also check
without 8).

» Choose r pseudorandomly to avoid issues with bad
randomness.

» Signing equation ensures sP = R+ hQ = 8sP = 8R + 8hQ.
However, 8sP = 8R + 8hQ does not imply sP = R + hQ:
Let R’ = rP + Pg, where Pg is a point of order 8. Use R’ in
h = H(R', Q, m), compute s = r + ha mod ¢, and put (R, s)
as signature. Then
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EdDSA — Ed25519
Let p =225 — 19, d = —121665/121666 and

E:—x?>4y? =1+ dx?y2.
Base point P has prime order ¢, |E(F,)| = 8¢.

Scheme follows Schnorr, with some improvements:

» Put h = H(R, Q, m) to reduce multi-target attacks.

» Verify 8sP = 8R + 8hQ to deal with cofactor (can also check
without 8).

» Choose r pseudorandomly to avoid issues with bad
randomness.

» Signing equation ensures sP = R+ hQ = 8sP = 8R + 8hQ.
However, 8sP = 8R + 8hQ does not imply sP = R + hQ:
Let R’ = rP + Pg, where Pg is a point of order 8. Use R’ in
h = H(R', Q, m), compute s = r + ha mod ¢, and put (R, s)
as signature. Then 8sP = 8(r + ha)P = 8R + 8hQ =
8R+(0,1) + 8hQ@ = 8R + 8Ps + 8hQ = 8R' + 8hQ.

Thus (R’, s) verifies. Note, this did need a in signing.

Tanja Lange EdDSA considerations 2



What is going on here?

8s = 8r + 8ha mod ¢ implies s = r + ha mod /
as gcd(8,¢) =1 for large prime £.
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What is going on here?

8s = 8r + 8ha mod ¢ implies s = r + ha mod /
as gcd(8,¢) =1 for large prime £.

But 8s = 8r + 8ha mod 8¢ does not imply s = r + ha mod ¢ and
that's what we're checking in 8sP = 8R + 8hQ unless we test that
R and Q have order ¢ (rather than 2/¢ for i € {1,2,3}).
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What is going on here?

8s = 8r + 8ha mod ¢ implies s = r + ha mod /
as gcd(8,¢) =1 for large prime £.
But 8s = 8r 4+ 8ha mod 8¢ does not imply s = r 4+ ha mod ¢ and

that's what we're checking in 8sP = 8R + 8hQ unless we test that
R and Q have order ¢ (rather than 2/¢ for i € {1,2,3}).

Note that we could have tweaked Q to @ = Q + Pg and produced
a signature under Q' using s = r + ha mod /.

So, tweaked Alice with @’ could use Alice to generate signatures
without herself knowing a? This is not quite CMA as the key
differs but would be undesirable.
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What is going on here?

8s = 8r + 8ha mod ¢ implies s = r + ha mod /
as gcd(8,¢) =1 for large prime £.

But 8s = 8r 4+ 8ha mod 8¢ does not imply s = r 4+ ha mod ¢ and
that's what we're checking in 8sP = 8R + 8hQ unless we test that
R and Q have order ¢ (rather than 2/¢ for i € {1,2,3}).

Note that we could have tweaked Q to @ = Q + Pg and produced
a signature under Q' using s = r + ha mod /.

So, tweaked Alice with @’ could use Alice to generate signatures
without herself knowing a? This is not quite CMA as the key
differs but would be undesirable.

No, Q' is included in h = H(R, @', m) and Alice would use Q.

Neither of these is an attack as h fixes R and Q.
But why include the 8 in verifying? First some interlude.
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Prelude to batch verification

Assume Bob needs to verify many signatures and signatures are
typically correct. No, do not slack off!
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Prelude to batch verification

Assume Bob needs to verify many signatures and signatures are
typically correct. No, do not slack off!

Write (m;, Qi, R;, s;) for the ith signature (R;,s;), which is on
message m; under public key Q;.

Need to compute h; = H(R;, Q;, m;) for each of them.
But can combine checking s;P = Ry + h1Q1, 5P = R + hyQ>:

?
(s1+s2)P=Ri+ R+ hQ1+ hQ

computed as (s; + )P — h1 Q1 — hay Q2 S R1 + R» with one triple
scalar multiplication and an addition.
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Need to compute h; = H(R;, Q;, m;) for each of them.
But can combine checking s;P = Ry + h1Q1, 5P = R + hyQ>:

?
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computed as (s; + )P — h1 Q1 — hay Q2 S R1 + R» with one triple
scalar multiplication and an addition.

Problem: Eve can sign as Alice!

Tanja Lange EdDSA considerations 4



Prelude to batch verification

Assume Bob needs to verify many signatures and signatures are
typically correct. No, do not slack off!

Write (m;, Qi, R;, s;) for the ith signature (R;,s;), which is on
message m; under public key Q;.

Need to compute h; = H(R;, Q;, m;) for each of them.
But can combine checking s;P = Ry + h1Q1, 5P = R + hyQ>:

?
(s1+s2)P=Ri+ R+ hQ1+ hQ

computed as (s; + )P — h1 Q1 — hay Q2 S R1 + R» with one triple
scalar multiplication and an addition.

Problem: Eve can sign as Alice!

(ml> QA7 rQA7 51)7 (m27 QE = er _(r + hl)QA7 eh2 —S1 mod /)
for random r, s; verify when batched:
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Prelude to batch verification

Assume Bob needs to verify many signatures and signatures are
typically correct. No, do not slack off!

Write (m;, Qi, R;, s;) for the ith signature (R;,s;), which is on
message m; under public key Q;.

Need to compute h; = H(R;, Q;, m;) for each of them.
But can combine checking s;P = Ry + h1Q1, 5P = R + hyQ>:

?
(s1+s2)P=Ri+ R+ hQ1+ hQ

computed as (s; + )P — h1 Q1 — hay Q2 S R1 + R» with one triple
scalar multiplication and an addition.

Problem: Eve can sign as Alice!

(ml, QA, rQA, 51), (mz, QE = eP, —(r =+ hl)QA, eh2 — S5 mod f)
for random r, s; verify when batched:

(s14+ )P = (s1+ ehy —s1)P = ehp, P =

rQa—rQa—hmQa+ hQa+emnP =R+ R+ hQa+ hQE
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Batch verification
Write (m;, Qi, R;, s;) for the ith signature (R;,s;), which is on
message m; under public key Q;.

Need to compute h; = H(R;, Q;, m;) for each of them.
But can combine checking s;P = Ry + h1 Q1, 5P = Ry + haQa:

)
(zis1 + 229)P = z1R1 + z2Ro + z1h Q1 + 22h2 Q2

using randomly chosen zj, z>.
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Batch verification

Write (m;, Qi, R;, s;) for the ith signature (R;,s;), which is on
message m; under public key Q;.

Need to compute h; = H(R;, Q;, m;) for each of them.
But can combine checking s;P = Ry + h1 Q1, 5P = Ry + haQa:
?
(z151 + 229)P = 21R1 + 2R + 21 Q1 + 222 Q2
using randomly chosen zj, z>.
Important: verifier chooses z1, z», no flexibility for Eve.

What does this prove?
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Batch verification
Write (m;, Qi, R;, s;) for the ith signature (R;,s;), which is on
message m; under public key Q;.

Need to compute h; = H(R;, Q;, m;) for each of them.
But can combine checking s;P = Ry + h1 Q1, 5P = Ry + haQa:
?
(z151 + 229)P = 21R1 + 2R + 21 Q1 + 222 Q2
using randomly chosen zj, z>.
Important: verifier chooses z1, z», no flexibility for Eve.

What does this prove?
Let T; = R; + h;Q; — s; P, then verification implies
z1T1 + z T, = (0,1) for verifier-chosen z;.
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Batch verification
Write (m;, Qi, R;, s;) for the ith signature (R;,s;), which is on
message m; under public key Q;.

Need to compute h; = H(R;, Q;, m;) for each of them.
But can combine checking s;P = Ry + h1 Q1, 5P = Ry + haQa:

?
(zis1 + 229)P = z1R1 + z2Ro + z1h Q1 + 22h2 Q2
using randomly chosen zj, z>.

Important: verifier chooses z1, z», no flexibility for Eve.

What does this prove?

Let T; = R; + h;Q; — s; P, then verification implies

z1T1 + z T, = (0,1) for verifier-chosen z;.

R; and Q; may not have order ¢, so the T; could have order 8 or
less => 1/8 chance of holding for random z; and such T; # (0,1).
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Batch verification
Write (m;, Qi, R;, s;) for the ith signature (R;,s;), which is on
message m; under public key Q;.

Need to compute h; = H(R;, Q;, m;) for each of them.
But can combine checking s;P = Ry + h1 Q1, 5P = Ry + haQa:

?
(zis1 + 229)P = z1R1 + z2Ro + z1h Q1 + 22h2 Q2
using randomly chosen zj, z>.

Important: verifier chooses z1, z», no flexibility for Eve.

What does this prove?

Let T; = R; + h;Q; — s; P, then verification implies

z1T1 + z T, = (0,1) for verifier-chosen z;.

R; and Q; may not have order ¢, so the T; could have order 8 or
less => 1/8 chance of holding for random z; and such T; # (0,1).

Let T/ = 8R; + 8h;Q; — 8s;P, then verification implies
z1T{ + 2T} =(0,1) for T/ in a group of order ¢

1
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Batch verification
Write (m;, Qi, R;, s;) for the ith signature (R;,s;), which is on
message m; under public key Q;.

Need to compute h; = H(R;, Q;, m;) for each of them.
But can combine checking s;P = Ry + h1 Q1, 5P = Ry + haQa:

?
(z151 + 222)P = z1R1 + 22Ro + 21 Q1 + 222 Q>
using randomly chosen zj, z>.
Important: verifier chooses z1, z», no flexibility for Eve.

What does this prove?

Let T; = R; + h;Q; — s; P, then verification implies

z1T1 + z T, = (0,1) for verifier-chosen z;.

R; and Q; may not have order ¢, so the T; could have order 8 or
less => 1/8 chance of holding for random z; and such T; # (0,1).

Let T/ = 8R; + 8h;Q; — 8s;P, then verification implies
z1T{ + 2T = (0,1) for T/ in a group of order ¢ = 1/¢ chance of
holding for random z; and T/ # (0,1),
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Batch verification
Write (m;, Qi, R;, s;) for the ith signature (R;,s;), which is on
message m; under public key Q;.

Need to compute h; = H(R;, Q;, m;) for each of them.
But can combine checking s;P = Ry + h1 Q1, 5P = Ry + haQa:

?
(z151 + 222)P = z1R1 + 22Ro + 21 Q1 + 222 Q>
using randomly chosen zj, z>.
Important: verifier chooses z1, z», no flexibility for Eve.

What does this prove?

Let T; = R; + h;Q; — s; P, then verification implies

z1T1 + z T, = (0,1) for verifier-chosen z;.

R; and Q; may not have order ¢, so the T; could have order 8 or
less => 1/8 chance of holding for random z; and such T; # (0,1).

Let T/ = 8R; + 8h;Q; — 8s;P, then verification implies
z1T{ + 2T = (0,1) for T/ in a group of order ¢ = 1/¢ chance of
holding for random z; and T] # (0,1), i.e., T/ =(0,1).
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Batch verification for Ed25519

Assume Bob needs to verify many signatures (mj, Q;, R, s;).

1. Compute h; = H(R;, Q;, m;) for each of them.

2. Pick random integers z; < 2128
Good enough for failure probability and cheaper to handle.

3. Compute batch verification as

— (Z z;s; mod E) P+ Z(z,-h,- mod ¢)Q; + Z ziR; 2 (0,1)

with one multi-scalar multiplication (Bos—Coster algorithm).
4. if failure, check signatures individually/in smaller batches.

For k signatures these are k + 1 scalars of size £ and k of size 2128,
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Forgery 8s;P # 8R; + 8h; Q; passes with probability 27128
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Batch verification for Ed25519

Assume Bob needs to verify many signatures (mj, Q;, R, s;).

1. Compute h; = H(R;, Q;, m;) for each of them.

2. Pick random integers z; < 2128
Good enough for failure probability and cheaper to handle.

3. Compute batch verification as

— (Z z;s; mod E) P+ Z(z,-h,- mod ¢)Q; + Z ziR; 2 (0,1)

with one multi-scalar multiplication (Bos—Coster algorithm).
4. if failure, check signatures individually/in smaller batches.

For k signatures these are k + 1 scalars of size £ and k of size 2128,

Forgery 8s;P # 8R; + 8h; Q; passes with probability 27128
To match security guarantees, test 8s;P Z 8R; + 8h;Q; also for
single Ed25519 signature verification
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