
Elliptic-curve cryptography VIII
Constant-time scalar multiplication

Tanja Lange

Eindhoven University of Technology

2MMC10 – Cryptology



Double-and-always-add

a = 44444 # our super secret scalar. No, not that one.

l = max # some maximum bit length, matching order(P)

A = a.digits(2,padto = l) # fill with 0 to lenght l

R = 0 # so initial doublings don’t matter, 0=0P

for i in range(l-1,-1,-1): # fixed-length loop

R = 2R

Q = R + P

R = (1 - A[i]) * R + A[i] * Q # selection by arithmetic

print(R)

This costs 1 addition per bit, so as slow as worst case,
but leads to uniform trace – if the other operations are uniform.

I Formulas for addition on Weierstrass curves have exceptions for
adding ∞, so initialization at ∞ does not work.

I Edwards curves have a complete addition law, easy to double or add
the neutral element (0, 1).

Tanja Lange Elliptic-curve cryptography VIII 2



Double-and-always-add

a = 44444 # our super secret scalar. No, not that one.

l = max # some maximum bit length, matching order(P)

A = a.digits(2,padto = l) # fill with 0 to lenght l

R = 0 # so initial doublings don’t matter, 0=0P

for i in range(l-1,-1,-1): # fixed-length loop

R = 2R

Q = R + P

R = (1 - A[i]) * R + A[i] * Q # selection by arithmetic

print(R)

This costs 1 addition per bit, so as slow as worst case,
but leads to uniform trace – if the other operations are uniform.

I Formulas for addition on Weierstrass curves have exceptions for
adding ∞, so initialization at ∞ does not work.

I Edwards curves have a complete addition law, easy to double or add
the neutral element (0, 1).

Tanja Lange Elliptic-curve cryptography VIII 2



Montgomery ladder

def cswap(bit, R, S): # constant time conditional swap

dummy = bit * (R - S) # 0 or R - S

R = R - dummy # R or R - (R - S) = S

S = S + dummy # S or S + (R - S) = R

return (R, S)

a = 44444 # our super secret scalar. No, not that one.

l = max # some maximum bit length, matching order(P)

A = a.digits(2,padto = l) # fill with 0 to lenght l

P0 = 0 # so initial doublings don’t matter, 0=0P

P1 = P # difference P1 - P0 = P

for i in range(l-1,-1,-1): # fixed-length loop

(P0, P1) = cswap(A[i], P0, P1) # see above

P1 = P0 + P1 # addition with fixed difference

P0 = 2P0 # double point for which bit is set

(P0, P1) = cswap(A[i], P0, P1) # swap back, can merge

print(P0)

This uses one doubling and one addition per bit. No dummy additions.

Tanja Lange Elliptic-curve cryptography VIII 3



Loop in Montgomery ladder

P0 = 0 # so initial doublings don’t matter, 0=0P

P1 = P # difference P1 - P0 = P

for i in range(l-1,-1,-1): # fixed-length loop

(P0, P1) = cswap(A[i], P0, P1) # see above

P1 = P0 + P1 # addition with fixed difference

P0 = 2P0 # double point for which bit is set

(P0, P1) = cswap(A[i], P0, P1) # swap back, can merge

print(P0)

if A[i]=0:
cswap(A[i], P0, P1) leaves fixed,
so the new values are
P0 = 2P0, P1 = P0 + P1

(no effect of swapping back).

if A[i]=1:
cswap(A[i], P0, P1) swaps,
so the new values are
P1 = 2P1, P0 = P0 + P1

(after swapping back).

Either way, P1 - P0 = P after each step.

Addition is of points with know difference called differential addition.
Differential addition is faster than general addition on some curves incl.
Montgomery curves (see part VIII).

Tanja Lange Elliptic-curve cryptography VIII 4



Loop in Montgomery ladder

P0 = 0 # so initial doublings don’t matter, 0=0P

P1 = P # difference P1 - P0 = P

for i in range(l-1,-1,-1): # fixed-length loop

(P0, P1) = cswap(A[i], P0, P1) # see above

P1 = P0 + P1 # addition with fixed difference

P0 = 2P0 # double point for which bit is set

(P0, P1) = cswap(A[i], P0, P1) # swap back, can merge

print(P0)

if A[i]=0:
cswap(A[i], P0, P1) leaves fixed,
so the new values are
P0 = 2P0, P1 = P0 + P1

(no effect of swapping back).

if A[i]=1:
cswap(A[i], P0, P1) swaps,
so the new values are
P1 = 2P1, P0 = P0 + P1

(after swapping back).

Either way, P1 - P0 = P after each step.

Addition is of points with know difference called differential addition.
Differential addition is faster than general addition on some curves incl.
Montgomery curves (see part VIII).

Tanja Lange Elliptic-curve cryptography VIII 4



Loop in Montgomery ladder

P0 = 0 # so initial doublings don’t matter, 0=0P

P1 = P # difference P1 - P0 = P

for i in range(l-1,-1,-1): # fixed-length loop

(P0, P1) = cswap(A[i], P0, P1) # see above

P1 = P0 + P1 # addition with fixed difference

P0 = 2P0 # double point for which bit is set

(P0, P1) = cswap(A[i], P0, P1) # swap back, can merge

print(P0)

if A[i]=0:
cswap(A[i], P0, P1) leaves fixed,
so the new values are
P0 = 2P0, P1 = P0 + P1

(no effect of swapping back).

if A[i]=1:
cswap(A[i], P0, P1) swaps,
so the new values are
P1 = 2P1, P0 = P0 + P1

(after swapping back).

Either way, P1 - P0 = P after each step.

Addition is of points with know difference called differential addition.
Differential addition is faster than general addition on some curves incl.
Montgomery curves (see part VIII).

Tanja Lange Elliptic-curve cryptography VIII 4


