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Double-and-always-add

a = 44444 # our super secret scalar. No, not that one.

l = max # some maximum bit length, matching order(P)

A = a.digits(2,padto = l) # fill with 0 to lenght l

R = 0 # so initial doublings don’t matter, 0=0P

for i in range(l-1,-1,-1): # fixed-length loop

R = 2R

Q = R + P

R = (1 - A[i]) * R + A[i] * Q # selection by arithmetic

print(R)

This costs 1 addition per bit, so as slow as worst case,
but leads to uniform trace – if the other operations are uniform.

I Formulas for addition on Weierstrass curves have exceptions for
adding ∞, so initialization at ∞ does not work.

I Edwards curves have a complete addition law, easy to double or add
the neutral element (0, 1).
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Montgomery ladder

def cswap(bit, R, S): # constant time conditional swap

dummy = bit * (R - S) # 0 or R - S

R = R - dummy # R or R - (R - S) = S

S = S + dummy # S or S + (R - S) = R

return (R, S)

a = 44444 # our super secret scalar. No, not that one.

l = max # some maximum bit length, matching order(P)

A = a.digits(2,padto = l) # fill with 0 to lenght l

P0 = 0 # so initial doublings don’t matter, 0=0P

P1 = P # difference P1 - P0 = P

for i in range(l-1,-1,-1): # fixed-length loop

(P0, P1) = cswap(A[i], P0, P1) # see above

P1 = P0 + P1 # addition with fixed difference

P0 = 2P0 # double point for which bit is set

(P0, P1) = cswap(A[i], P0, P1) # swap back, can merge

print(P0)

This uses one doubling and one addition per bit. No dummy additions.
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Loop in Montgomery ladder

P0 = 0 # so initial doublings don’t matter, 0=0P

P1 = P # difference P1 - P0 = P

for i in range(l-1,-1,-1): # fixed-length loop

(P0, P1) = cswap(A[i], P0, P1) # see above

P1 = P0 + P1 # addition with fixed difference

P0 = 2P0 # double point for which bit is set

(P0, P1) = cswap(A[i], P0, P1) # swap back, can merge

print(P0)

if A[i]=0:
cswap(A[i], P0, P1) leaves fixed,
so the new values are
P0 = 2P0, P1 = P0 + P1

(no effect of swapping back).

if A[i]=1:
cswap(A[i], P0, P1) swaps,
so the new values are
P1 = 2P1, P0 = P0 + P1

(after swapping back).

Either way, P1 - P0 = P after each step.

Addition is of points with know difference called differential addition.
Differential addition is faster than general addition on some curves incl.
Montgomery curves (see part VIII).
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