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Montgomery curves
Montgomery curves are a special form of elliptic curves which can be
written in the form

MA,B : Bv2 = u3 + Au2 + u, B 6= 0,A 6= ±2.

This almost matches the general Weierstrass equation given in talk V.

The addition law is very similar: The first 3 cases match, the others are

If u1 = u2 and v1 = v2 6= 0 then λ = (3u21 + 2Au1 + 1)/(2Bv1).
If u1 6= u2 then λ = (v1 − v2)/(u1 − u2).
In both cases

u3 = Bλ2 − A− u1 − u2, v3 = λ(u1 − u3)− v1

As on Weierstrass curves:
−(u1, v1) = (u1,−v1) and ∞ is the neutral element.

Montgomery curves always have a point (0, 0) of order 2. Over a finite
field they have at least one of the following (see next page for proof)

I Two more points of order 2.

I Two points of order 4 doubling to (0, 0).

Hence, the group order is always divisible by 4.
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Proof
Want to show that Bv2 = u3 + Au2 + u has more points of order 2 or
points of order 4.

If A2 − 4 is a square then

u3 + Au2 + u = u(u2 + Au + 1) = u(u − u1)(u − u2),

with u1,2 = (−A±
√
A2 − 4)/2 and (u1, 0), (u2, 0) have order 2.

Else if (A + 2)/B is a square then (1,±
√

(A + 2)/B) double to (0, 0),
hence have order 4

Else (A− 2)/B is a square and (−1,±
√

(A− 2)/B) double to (0, 0),
hence have order 4.

Easy to see that these are on curve. Small computation for doubling.

Let a, b ∈ F∗
p. Then either ab is a square or exactly one of a and b is.

Prove this via F∗
p = 〈g〉 and that any even power of g is a square.

Thus at least one of (A + 2)/B, (A− 2)/B, and (A2 − 4)/B2 is square.
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Birational equivalences
Two curves are birationally equivalent if there exist maps between the
curves given by fractions of polynomials (rational maps) which map
almost all points on one curve to the other and almost all points of the
other to the first and which are compatible with the group law, i.e.

φ1 : E1 → E2, φ2 : E2 → E1, φi (P + Q) = φi (P) + φi (Q),

where φi are rational maps and for all P,Q,P + Q on Ei where φi is
defined.

Twisted Edwards curve Ea,d : ax2 + y2 = 1 + dx2y2 is birationally
equivalent to Montgomery curve MA,B : Bv2 = u3 + Au2 + u for

A = 2(a + d)/(a− d),B = 4/(a− d)⇔ a = (A + 2)/B, d = (A− 2)/B

mapping

u = (1 + y)/(1− y), v = u/x ⇔ x = u/v , y = (u − 1)/(u + 1).

These have exceptions at (0, 0), (u1, 0), (u2, 0), (−1,±
√

(A− 2)/B),∞
on MA,B and (0, 1), (0,−1) and any points at infinity on Ea,d if those
points exist.
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