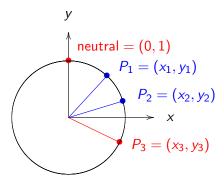
Elliptic-curve cryptography III Edwards curves

Tanja Lange

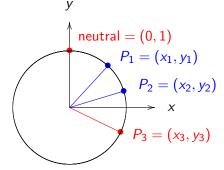
Eindhoven University of Technology

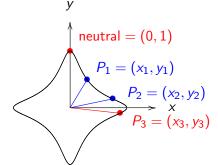
2MMC10 - Cryptology

Clock

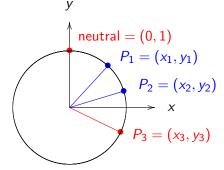


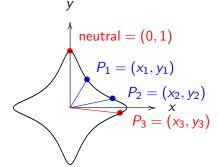
Clock curve: $x^2 + y^2 = 1$. $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$ $= (x_1y_2 + y_1x_2, y_1y_2 - x_1x_2)$. Clock and Edwards curve (for d = -30)





Clock curve: $x^2 + y^2 = 1$. $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$ $= (x_1y_2 + y_1x_2, y_1y_2 - x_1x_2)$. Edwards curve: $x^2 + y^2 = 1 - 30x^2y^2$. $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$ $= ((x_1y_2 + y_1x_2)/(1 - 30x_1x_2y_1y_2),$ $(y_1y_2 - x_1x_2)/(1 + 30x_1x_2y_1y_2)).$ Clock and Edwards curve (for d = -30)





Clock curve: $x^{2} + y^{2} = 1.$ $(x_{1}, y_{1}) + (x_{2}, y_{2}) = (x_{3}, y_{3})$ $= (x_{1}y_{2} + y_{1}x_{2}, y_{1}y_{2} - x_{1}x_{2}).$ Edwards curve: $x^{2} + y^{2} = 1 - 30x^{2}y^{2}$. $(x_{1}, y_{1}) + (x_{2}, y_{2}) = (x_{3}, y_{3})$ $= ((x_{1}y_{2} + y_{1}x_{2})/(1 - 30x_{1}x_{2}y_{1}y_{2}),$ $(y_{1}y_{2} - x_{1}x_{2})/(1 + 30x_{1}x_{2}y_{1}y_{2}))$.

Numerators match. Denominators equal for $x_1x_2y_1y_2 = 0$.

Tanja Lange

Elliptic-curve cryptography III

Do we even have a group here?

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_2 + y_1x_2}{1 - 30x_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 + 30x_1x_2y_1y_2}\right)$$

• If $x_i = 0$ or $y_i = 0$ then $1 \pm 30x_1x_2y_1y_2 = 1 \neq 0$.

Do we even have a group here?

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_2 + y_1x_2}{1 - 30x_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 + 30x_1x_2y_1y_2}\right)$$

• If $x_i = 0$ or $y_i = 0$ then $1 \pm 30x_1x_2y_1y_2 = 1 \neq 0$.

• For
$$(x, y)$$
 on $x^2 + y^2 = 1 - 30x^2y^2$, we have $30x^2y^2 < 1$,

Do we even have a group here?

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_2 + y_1x_2}{1 - 30x_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 + 30x_1x_2y_1y_2}\right)$$

• If
$$x_i = 0$$
 or $y_i = 0$ then $1 \pm 30x_1x_2y_1y_2 = 1 \neq 0$.

• For (x, y) on $x^2 + y^2 = 1 - 30x^2y^2$, we have $30x^2y^2 < 1$, thus $\sqrt{30} |xy| < 1$.

Do we even have a group here?

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_2 + y_1x_2}{1 - 30x_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 + 30x_1x_2y_1y_2}\right)$$

• If
$$x_i = 0$$
 or $y_i = 0$ then $1 \pm 30x_1x_2y_1y_2 = 1 \neq 0$.

- For (x, y) on $x^2 + y^2 = 1 30x^2y^2$, we have $30x^2y^2 < 1$, thus $\sqrt{30} |xy| < 1$.
- $(x_1, y_1), (x_2, y_2)$ are on the curve, thus $\sqrt{30} |x_1y_1| < 1$ and $\sqrt{30} |x_2y_2| < 1$.

Do we even have a group here?

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_2 + y_1x_2}{1 - 30x_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 + 30x_1x_2y_1y_2}\right)$$

- If $x_i = 0$ or $y_i = 0$ then $1 \pm 30x_1x_2y_1y_2 = 1 \neq 0$.
- For (x, y) on $x^2 + y^2 = 1 30x^2y^2$, we have $30x^2y^2 < 1$, thus $\sqrt{30} |xy| < 1$.
- $(x_1, y_1), (x_2, y_2)$ are on the curve, thus $\sqrt{30} |x_1y_1| < 1$ and $\sqrt{30} |x_2y_2| < 1$. Multiply them to get $30|x_1y_1x_2y_2| < 1$ so

 $1\pm 30x_1x_2y_1y_2 > 0.$

Both numerators are strictly larger than 0. Same works for any d < 0 and not just d = -30.

Tanja Lange

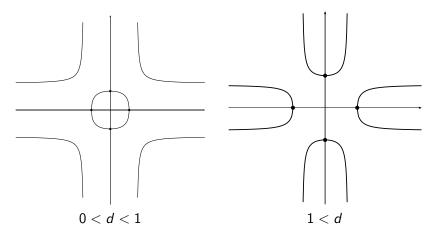
The Edwards addition law

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right)$$

is a group law for the curve $x^2 + y^2 = 1 + dx^2y^2$ for d < 0.

- Addition result is on curve. Not shown here, yet, but easy by computer.
- Addition law is associative. Not shown here, yet, but easy by computer.
- (0,1) is neutral element.
- $(x_1, y_1) + (-x_1, y_1) = (0, 1)$, so $-(x_1, y_1) = (-x_1, y_1)$.
- Addition law is commutative.

Curve shapes for d > 0



These curve shapes have points at infinity and do not have complete addition laws.

Tanja Lange