Elliptic-curve cryptography XIII Security requirements

Tanja Lange

Eindhoven University of Technology

2MMC10 - Cryptology

Anomalous curves: If E/\mathbf{F}_p has $\#E(\mathbf{F}_p) = p$ then can transfer $E(\mathbf{F}_p)$ to $(\mathbf{F}_p, +)$.

Anomalous curves:

If E/\mathbf{F}_p has $\#E(\mathbf{F}_p) = p$ then can transfer $E(\mathbf{F}_p)$ to $(\mathbf{F}_p, +)$. Very easy DLP.

Anomalous curves:

If E/\mathbf{F}_p has $\#E(\mathbf{F}_p) = p$ then can transfer $E(\mathbf{F}_p)$ to $(\mathbf{F}_p, +)$. Very easy DLP.

Weil descent:

Maps DLP in *E* over $\mathbf{F}_{p^{mn}}$ to DLP on variety *J* over \mathbf{F}_{p^n} .

Anomalous curves:

If E/\mathbf{F}_p has $\#E(\mathbf{F}_p) = p$ then can transfer $E(\mathbf{F}_p)$ to $(\mathbf{F}_p, +)$. Very easy DLP.

Weil descent:

Maps DLP in *E* over $\mathbf{F}_{p^{mn}}$ to DLP on variety *J* over \mathbf{F}_{p^n} . Elements in *J* represented as polynomials of low'ish degree. \Rightarrow Can mount index calculus there.

This is efficient if dimension of J is not too big.

Anomalous curves:

If E/\mathbf{F}_p has $\#E(\mathbf{F}_p) = p$ then can transfer $E(\mathbf{F}_p)$ to $(\mathbf{F}_p, +)$. Very easy DLP.

Weil descent:

Maps DLP in *E* over $\mathbf{F}_{p^{mn}}$ to DLP on variety *J* over \mathbf{F}_{p^n} . Elements in *J* represented as polynomials of low'ish degree. \Rightarrow Can mount index calculus there.

This is efficient if dimension of J is not too big.

Particularly nice if J is Jacobian of hyperelliptic curve C. For genus g index calculus with small poly takes $\tilde{O}(p^{2-\frac{2}{g+1}})$; attack for g > 3.

Security requirements

We want elliptic curve E/\mathbf{F}_p with

- $#E(\mathbf{F}_p)$ almost prime, e.g., $#E(\mathbf{F}_p) = 2^r \cdot \ell$, $r \leq 3$.
- $p \approx \ell$ of ≈ 256 bits.
- *E* should be ordinary, i.e., $#E(\mathbf{F}_p) \neq p+1$.
- *E* should not be anomalous, i.e., $\#E(\mathbf{F}_p) \neq p$.

These are concerns about ECDLP security. Note: p, not p^n , so no Weil descent.

Security requirements

We want elliptic curve E/\mathbf{F}_p with

- $#E(\mathbf{F}_p)$ almost prime, e.g., $#E(\mathbf{F}_p) = 2^r \cdot \ell$, $r \leq 3$.
- $p \approx \ell$ of ≈ 256 bits.
- *E* should be ordinary, i.e., $#E(\mathbf{F}_p) \neq p+1$.
- *E* should not be anomalous, i.e., $\#E(\mathbf{F}_p) \neq p$.

These are concerns about ECDLP security. Note: p, not p^n , so no Weil descent.

For more properties and implementation security see https://safecurves.cr.yp.to/