Elliptic-curve cryptography XII Speedups to Pollard rho for ECC

Tanja Lange

Eindhoven University of Technology

2MMC10 - Cryptology

Can we use any structure in ECDLP?

On Weierstrass curve W = (x, y) and -W = (x, -y) have same x-coordinate. Search for x-coordinate collision.

Search space for collisions is only $\lceil \ell/2 \rceil$; this gives factor $\sqrt{2}$ speedup ... if $f(W_i) = f(-W_i)$.

Can we use any structure in ECDLP?

On Weierstrass curve W = (x, y) and -W = (x, -y) have same x-coordinate. Search for x-coordinate collision.

Search space for collisions is only $\lceil \ell/2 \rceil$; this gives factor $\sqrt{2}$ speedup ... if $f(W_i) = f(-W_i)$.

To ensure $f(W_i) = f(-W_i)$: Define $j = h(|W_i|)$ and $f(W_i) = |W_i| + c_j P + d_j Q$, with, e.g., $|W_i|$ the lexicographic minimum of $W_i, -W_i$. See DLP-IV for definition of the additive walk.

This negation speedup is textbook material.

Problem: fruitless cycles!

Example: If $h(|W_{i+1}|) = j = h(|W_i|)$ and $|W_{i+1}| = -W_{i+1}$ then

$$W_{i+2} = f(W_{i+1}) = -W_{i+1} + c_j P + d_j Q$$

= -(| W_i | +c_j P + d_j Q) + c_j P + d_j Q
= - | W_i |

Problem: fruitless cycles!

Example: If $h(|W_{i+1}|) = j = h(|W_i|)$ and $|W_{i+1}| = -W_{i+1}$ then

$$W_{i+2} = f(W_{i+1}) = -W_{i+1} + c_j P + d_j Q$$

= -(| W_i | + c_j P + d_j Q) + c_j P + d_j Q
= - | W_i |

so $|W_{i+2}| = |W_i|$ so $W_{i+3} = W_{i+1}$ so $W_{i+4} = W_{i+2}$ etc.

Problem: fruitless cycles!

Example: If $h(|W_{i+1}|) = j = h(|W_i|)$ and $|W_{i+1}| = -W_{i+1}$ then

$$\begin{aligned} \mathcal{W}_{i+2} &= f(\mathcal{W}_{i+1}) = -\mathcal{W}_{i+1} + c_j P + d_j Q \\ &= -(|\mathcal{W}_i| + c_j P + d_j Q) + c_j P + d_j Q \\ &= -|\mathcal{W}_i| \end{aligned}$$

so $|W_{i+2}| = |W_i|$ so $W_{i+3} = W_{i+1}$ so $W_{i+4} = W_{i+2}$ etc.

If *h* maps to *r* different values then expect this example to occur with probability 1/(2r) at each step.

Known issue, not quite textbook.

Tanja Lange

Eliminating fruitless cycles

Issue of fruitless cycles is known and several fixes are proposed. Summary: most of them got it wrong.

Eliminating fruitless cycles

Issue of fruitless cycles is known and several fixes are proposed. Summary: most of them got it wrong.

So what to do? Choose a big r, e.g. r = 2048. 1/(2r) = 1/4096 not too frequent cycles.

Check for cycles occasionally and escape cycle deterministically: Let \bar{W} be the smallest point in the cycle; escape by computing $2\bar{W}$.

Eliminating fruitless cycles

Issue of fruitless cycles is known and several fixes are proposed. Summary: most of them got it wrong.

So what to do? Choose a big r, e.g. r = 2048. 1/(2r) = 1/4096 not too frequent cycles.

Check for cycles occasionally and escape cycle deterministically: Let \bar{W} be the smallest point in the cycle; escape by computing $2\bar{W}$.

Consequence: preserve most of negation speedup. 3 slides of work for $\sqrt{2}$?!

See ePrint 2011/003 for more details and historical comments.