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Generic attacks against DLP
All attacks in this unit are generic attacks, i.e., they work in any group.
Pohlig-Hellman reduces security of DLP to security of largest prime order
subgroup. Many groups are much weaker than their size n predicts!

Let n =
∏

peii , ` = max{pi}.

Breaking DLP costs O(
√
`)(log n)O(1) bit operations.

O ignores all constants and lower order terms. (log n)O(1) covers ei
repetitions in PH, scalar multiplications, and cost of group operations.

Remember? Warning #1: Many p are unsafe!
(from ecc-2.pdf, talking about the clock group)

The clock over Fp has

I p + 1 points for p ≡ 3 mod 4,

I p − 1 points for p ≡ 1 mod 4.

Thus clock over F17 has 16 = 24 points, very weak DLP.
Fermat p = 22

m

+1 & Mersenne p = 2m−1 primes have weak clock DLP.

Similar story for elliptic curves, but no general statements on group order.
Important to count points to avoid hitting weak group orders n.
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DDHP, CDHP, and DLP
So far: DLP attacks; typically also best approach for CDHP.

DDHP in group of n =
∏

peii elements:
Given P, aP, bP, and cP decide whether cP = abP.

For small pi can easily get ai , bi , ci .

If c ≡ ab mod n then also ci ≡ aibi mod pi because pi divides n.

If c 6≡ ab mod n then ci ≡ aibi mod pi only with probability 1/pi .

Thus, compute ai , bi , ci for smallest prime pi .

I If ci 6≡ aibi mod pi we know this is not a valid DH triple.

I Else try next larger prime, or p2i , or accept higher risk of false
positive and output that it is a valid DH triple.

We correctly solve the DDHP with probability (2pi − 1)/(2pi )
at the cost of 3 DLPs in group of size pi

Example: pi = 2.
Trivial DLPs, correct with 3/4 probability. Advantage over guessing: 1/4.

For DDHP to be hard make sure n is prime.
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