Discrete logarithm problem VII Pohlig-Hellman attack

Tanja Lange

Eindhoven University of Technology

2MMC10 - Cryptology

Pohlig-Hellman attack turns DLP $a = \log_P Q$ in group of order

$$n = \prod p_i^{e_i}, \quad p_i ext{ prime }, p_i
eq p_j, e_i \in \mathsf{Z}_{>0}$$

into

$$\sum (e_i \text{ DLPs in group of order } p_i),$$

 $\sum (e_i + 1)$ scalar multiplications, and one application of the CRT.

Pohlig-Hellman attack turns DLP $a = \log_P Q$ in group of order

$$n = \prod p_i^{e_i}, \quad p_i \text{ prime }, p_i
eq p_j, e_i \in \mathsf{Z}_{>0}$$

into

$$\sum (e_i \text{ DLPs in group of order } p_i),$$

 $\sum (e_i + 1)$ scalar multiplications, and one application of the CRT. Examples: $n \in \{61, 63, 64, 65\}$

- ▶ n = 64: 7 scalar multiplications (by 32), 16, 8, 4, 2, 1), 6 trivial DLs.
- ▶ n = 61: 1 DL in group of 61 elements (no effect of PH).

Pohlig-Hellman attack turns DLP $a = \log_P Q$ in group of order

$$n = \prod p_i^{e_i}, \quad p_i \text{ prime }, p_i \neq p_j, e_i \in \mathsf{Z}_{>0}$$

into

$$\sum (e_i \text{ DLPs in group of order } p_i),$$

 $\sum (e_i + 1)$ scalar multiplications, and one application of the CRT. Examples: $n \in \{61, 63, 64, 65\}$

- ▶ n = 64: 7 scalar multiplications (by 32), 16, 8, 4, 2, 1), 6 trivial DLs.
- ▶ n = 61: 1 DL in group of 61 elements (no effect of PH).
- n = 65 = 5 · 13: 4 scalar multiplications (by 13 and 5),
 1 DL in group of 5 elements, 1 DL in group of 13 elements.
- n = 63 = 3² · 7: 5 scalar multiplications (by 21, 7, and 9),
 2 DLs in group of 3 elements, 1 DL in group of 7 elements.

Pohlig-Hellman attack turns DLP $a = \log_P Q$ in group of order

$$n = \prod p_i^{e_i}, \quad p_i ext{ prime }, p_i
eq p_j, e_i \in \mathsf{Z}_{>0}$$

into

$$\sum (e_i \text{ DLPs in group of order } p_i),$$

 $\sum (e_i + 1)$ scalar multiplications, and one application of the CRT. Examples: $n \in \{61, 63, 64, 65\}$

- ▶ n = 64: 7 scalar multiplications (by 32), 16, 8, 4, 2, 1), 6 trivial DLs.
- ▶ n = 61: 1 DL in group of 61 elements (no effect of PH).
- n = 65 = 5 · 13: 4 scalar multiplications (by 13 and 5),
 1 DL in group of 5 elements, 1 DL in group of 13 elements.
- ▶ $n = 63 = 3^2 \cdot 7$: 5 scalar multiplications (by 21, 7, and 9), 2 DLs in group of 3 elements, 1 DL in group of 7 elements.

Pohlig-Hellman method reduces security of discrete logarithm problem in group generated by P to security of largest prime order subgroup.

Many groups are much weaker than their size n predicts!

Tanja Lange

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes.

Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes.

Put $n_i = n/p_i$. *P* has order *n*.

 $R_i = n_i P$ has order p_i .

 $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method,

i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done. Else we need to do $e_i - 1$ more steps of the same hardness.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done. Else we need to do $e_i - 1$ more steps of the same hardness.

Each of these steps updates n_i to n_i/p_i , does not touch R_i (we solve another DLP in the group of order p_i generated by R_i), and updates target S_i :

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done. Else we need to do $e_i - 1$ more steps of the same hardness.

Each of these steps updates n_i to n_i/p_i , does not touch R_i (we solve another DLP in the group of order p_i generated by R_i), and updates target S_i :

Assume $e_i = 2$: We want new $S_i = n_i Q$ to be multiple of R_i ,

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done. Else we need to do $e_i - 1$ more steps of the same hardness.

Each of these steps updates n_i to n_i/p_i , does not touch R_i (we solve another DLP in the group of order p_i generated by R_i), and updates target S_i :

Assume $e_i = 2$: We want new $S_i = n_i Q$ to be multiple of R_i , but n_i lost an extra p_i and unless $a_i = 0$ in previous step we need to update Q to Q'.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done. Else we need to do $e_i - 1$ more steps of the same hardness.

Each of these steps updates n_i to n_i/p_i , does not touch R_i (we solve another DLP in the group of order p_i generated by R_i), and updates target S_i :

Assume $e_i = 2$: We want new $S_i = n_i Q'$ to be multiple of R_i , but n_i lost an extra p_i and unless $a_i = 0$ in previous step we need to update Q to Q'.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done. Else we need to do $e_i - 1$ more steps of the same hardness.

Each of these steps updates n_i to n_i/p_i , does not touch R_i (we solve another DLP in the group of order p_i generated by R_i), and updates target S_i :

Assume $e_i = 2$: We want new $S_i = n_i Q'$ to be multiple of R_i , but n_i lost an extra p_i and unless $a_i = 0$ in previous step we need to update Q to Q'. $S_i = n_i(Q - a_iP) = n_i(a - a_i)P = n_i(p_ia')P = a'R_i$.

Tanja Lange

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. P has order n. $R_i = n_i P$ has order p_i . Let $a_i = a_{i,0} + a_{i,1}p_i + a_{i,2}p_i^2 + \dots + a_{i,e_i-1}p_i^{e_i-1}$ and $a \equiv a_i \mod p_i^{e_i}$. We first compute $a_{i,0}$, then $a_{i,1}, a_{i,2}, \dots$ Note $a_i - (a_{i,0} + a_{i,1}p_i) = a_{i,2}p_i^2 + \dots + a_{i,e_i-1}p_i^{e_i-1}$ is multiple of p_i^2 .

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_i, e_i \in \mathbf{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. P has order n. $R_i = n_i P$ has order p_i . Let $a_i = a_{i,0} + a_{i,1}p_i + a_{i,2}p_i^2 + \dots + a_{i,e_i-1}p_i^{e_i-1}$ and $a \equiv a_i \mod p_i^{e_i}$. We first compute $a_{i,0}$, then $a_{i,1}, a_{i,2}, \ldots$ Note $a_i - (a_{i,0} + a_{i,1}p_i) = a_{i,2}p_i^2 + \dots + a_{i,e_i-1}p_i^{e_i-1}$ is multiple of p_i^2 . In general $a_i - (a_{i,0} + a_{i,1}p_i + \dots + a_{i,i-1}p_i^{j-1}) = a_{i,i}p_i^j + \dots + a_{i,e_i-1}p_i^{e_i-1}$ is multiple of p_i^{J} . Initialize $Q_i = Q$ and $a_{i,-1} = 0$. (So that all steps look the same). The *j*th of the e_i steps, for $0 \le j < e_i$:

- ▶ updates n_i to n_i/p_i and Q_i to Q_i a_{i,j-1}p_i^{j-1}P; n_i looses factor p_i, Q_i gains an extra factor of p_i.
- ▶ computes S_i = n_iQ_i, a multiple of R_i, i.e., S_i = a_{i,j}R_i, using the new n_i and Q_i;
- solves this DLP to get a_{i,j}.

Tanja Lange

Pohlig-Hellman attack

Input: points P, Q with Q = aP, order $n = \prod_{i=1}^{r} p_i^{e_i}$ of P with $p_i \neq p_i, e_i \in \mathbf{Z}_{>0}$, fully factored Output: discrete logarithm a of Q base P1. for i = 1 to r 1.1 put $Q_i = Q$, $a_{i,-1} = 0$, $n_i = n/p_i$ 1.2 compute $R_i = n_i P$ 1.3 for i = 0 to $e_i - 1$ 1.3.1 compute $n_i = n/p_i^{j+1}$ # divide old n_i by p_i unless j = 01.3.2 compute $Q_i = Q_i - (a_{i,i-1}p_i^{j-1})P$ 1.3.3 compute $S_i = n_i Q_i$ 1.3.4 solve DLP $S_i = a_{i,j}R_i$ of order p_i 1.4 compute $a_i = \sum_{i=0}^{e_i-1} a_{i,i} p_i^j$ 2. solve CRT $a \equiv a_1 \mod p_1^{e_1}$ $a \equiv a_2 \mod p_2^{e_2}$ $\begin{array}{rcl} \vdots \\ a &\equiv & a_r \bmod p_r^{e_r} \end{array}$ to get a mod n

CRT works because $p_i^{e_i}$ are coprime and have product n.

Tanja Lange

Discrete logarithm problem VII