Discrete logarithm problem VI Building up to Pohlig–Hellman attack

Tanja Lange

Eindhoven University of Technology

2MMC10 - Cryptology

$$y^2 = x^3 - x$$
 over \mathbf{F}_p , $p = 1000003$.
 $P = (101384, 614510)$ has order $2 \cdot 53^2 \cdot 89$.

Given Q = aP = (670366, 740819), find $a = \log_P Q$

$$y^2 = x^3 - x$$
 over \mathbf{F}_p , $p = 1000003$.
 $P = (101384, 614510)$ has order $2 \cdot 53^2 \cdot 89$.
Given $Q = aP = (670366, 740819)$, find $a = \log_P Q$
 $R = (53^2 \cdot 89)P$ has order 2, and
 $S = (53^2 \cdot 89)Q$ is multiple of R .

 $y^2 = x^3 - x$ over \mathbf{F}_p , p = 1000003. P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$. Given Q = aP = (670366, 740819), find $a = \log_P Q$ $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Easy to compute $a_1 = \log_R S$

 $y^2 = x^3 - x$ over \mathbf{F}_p , p = 1000003. P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$. Given Q = aP = (670366, 740819), find $a = \log_P Q$ $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Easy to compute $a_1 = \log_R S$. Note $S = (53^2 \cdot 89)Q = (53^2 \cdot 89)aP$ and $(2 \cdot 53^2 \cdot 89)P = \infty$.

 $y^{2} = x^{3} - x \text{ over } \mathbf{F}_{p}, p = 1000003.$ $P = (101384, 614510) \text{ has order } 2 \cdot 53^{2} \cdot 89.$ Given Q = aP = (670366, 740819), find $a = \log_{P} Q$ $R = (53^{2} \cdot 89)P \text{ has order } 2, \text{ and}$ $S = (53^{2} \cdot 89)Q \text{ is multiple of } R.$ Easy to compute $a_{1} = \log_{R} S.$ Note $S = (53^{2} \cdot 89)Q = (53^{2} \cdot 89)aP \text{ and } (2 \cdot 53^{2} \cdot 89)P = \infty.$ $\bullet a \text{ even, i.e., } a = 2a': S = (53^{2} \cdot 89)2a'P = a'\infty = \infty$

 $v^2 = x^3 - x$ over **F**_p, p = 1000003. P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$. Given Q = aP = (670366, 740819), find $a = \log_{P} Q$ $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Easy to compute $a_1 = \log_R S$. Note $S = (53^2 \cdot 89)Q = (53^2 \cdot 89)aP$ and $(2 \cdot 53^2 \cdot 89)P = \infty$. ▶ a even, i.e., a = 2a': $S = (53^2 \cdot 89)2a'P = a'\infty = \infty$ ▶ a odd, i.e., a = 2a' + 1: $S = (53^2 \cdot 89)(2a' + 1)P = (53^2 \cdot 89)P \neq \infty$

 $v^2 = x^3 - x$ over **F**_p, p = 1000003. P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$. Given Q = aP = (670366, 740819), find $a = \log_{P} Q$ $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Easy to compute $a_1 = \log_R S \equiv a \mod 2$. Note $S = (53^2 \cdot 89)Q = (53^2 \cdot 89)aP$ and $(2 \cdot 53^2 \cdot 89)P = \infty$. • a even, i.e., a = 2a': $S = (53^2 \cdot 89)2a'P = a'\infty = \infty$ ▶ a odd, i.e., a = 2a' + 1: $S = (53^2 \cdot 89)(2a' + 1)P = (53^2 \cdot 89)P \neq \infty$

 $v^2 = x^3 - x$ over **F**_p, p = 1000003. P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$. Given Q = aP = (670366, 740819), find $a = \log_{P} Q$ $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Easy to compute $a_1 = \log_R S \equiv a \mod 2$. Note $S = (53^2 \cdot 89)Q = (53^2 \cdot 89)aP$ and $(2 \cdot 53^2 \cdot 89)P = \infty$. • a even, i.e., a = 2a': $S = (53^2 \cdot 89)2a'P = a'\infty = \infty$ ▶ a odd, i.e., a = 2a' + 1: $S = (53^2 \cdot 89)(2a' + 1)P = (53^2 \cdot 89)P \neq \infty$

 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R.

 $v^2 = x^3 - x$ over **F**_p, p = 1000003. P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$. Given Q = aP = (670366, 740819), find $a = \log_{P} Q$ $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Easy to compute $a_1 = \log_R S \equiv a \mod 2$. Note $S = (53^2 \cdot 89)Q = (53^2 \cdot 89)aP$ and $(2 \cdot 53^2 \cdot 89)P = \infty$. • a even, i.e., a = 2a': $S = (53^2 \cdot 89)2a'P = a'\infty = \infty$ ▶ a odd, i.e., a = 2a' + 1: $S = (53^2 \cdot 89)(2a' + 1)P = (53^2 \cdot 89)P \neq \infty$ $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R.

Compute $a_2 = \log_R S \equiv a \mod 53$. This is a DLP in a group of size 53.

 $y^2 = x^3 - x$ over **F**_p, p = 1000003. P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$. Given Q = aP = (670366, 740819), find $a = \log_P Q$ $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Easy to compute $a_1 = \log_R S \equiv a \mod 2$. Note $S = (53^2 \cdot 89)Q = (53^2 \cdot 89)aP$ and $(2 \cdot 53^2 \cdot 89)P = \infty$. ▶ a even, i.e., a = 2a': $S = (53^2 \cdot 89)2a'P = a'\infty = \infty$ ▶ a odd, i.e., a = 2a' + 1: $S = (53^2 \cdot 89)(2a' + 1)P = (53^2 \cdot 89)P \neq \infty$ $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$. This is a DLP in a group of size 53.

Takes more effort than size 2, but much easier than size 500002.

Can use Pollard rho to attack this subgroup problem in $\sqrt{53\pi/2}$ steps.

P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$.

 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (2 \cdot 53^2)P \text{ has order 89, and}$ $S = (2 \cdot 53^2)Q \text{ is multiple of } R.$ Compute $a_4 = \log_R S \equiv a \mod 89.$

P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$.

 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (2 \cdot 53^2)P \text{ has order 89, and}$ $S = (2 \cdot 53^2)Q \text{ is multiple of } R.$ Compute $a_4 = \log_R S \equiv a \mod 89.$

Use Chinese Remainder Theorem

 $a \equiv a_1 \mod 2,$ $a \equiv a_2 \mod 53,$ $a \equiv a_4 \mod 89,$

to determine a modulo

P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$.

 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (2 \cdot 53^2)P$ has order 89, and $S = (2 \cdot 53^2)Q$ is multiple of R. Compute $a_4 = \log_R S \equiv a \mod 89$.

Use Chinese Remainder Theorem

 $a \equiv a_1 \mod 2,$ $a \equiv a_2 \mod 53,$ $a \equiv a_4 \mod 89,$

to determine a modulo $2 \cdot 53 \cdot 89$.

P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$.

 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (2 \cdot 53^2)P \text{ has order 89, and}$ $S = (2 \cdot 53^2)Q \text{ is multiple of } R.$ Compute $a_4 = \log_R S \equiv a \mod 89.$

Use Chinese Remainder Theorem

 $a \equiv a_1 \mod 2$, $a \equiv a_2 \mod 53$, $a \equiv a_4 \mod 89$,

to determine a modulo $2 \cdot 53 \cdot 89$. Cost: $1 + \sqrt{53\pi/2} + \sqrt{89\pi/2}$. Note that cost counts steps, ignores computation of *R* and *S*.

P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$.

 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (2 \cdot 53^2)P \text{ has order 89, and}$ $S = (2 \cdot 53^2)Q \text{ is multiple of } R.$ Compute $a_4 = \log_R S \equiv a \mod 89.$

Use Chinese Remainder Theorem

 $a \equiv a_1 \mod 2$, $a \equiv a_2 \mod 53$, $a \equiv a_4 \mod 89$,

to determine a modulo $2 \cdot 53 \cdot 89$. Cost: $1 + \sqrt{53\pi/2} + \sqrt{89\pi/2}$. Note that cost counts steps, ignores computation of *R* and *S*.

But this misses a 53.

P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$.

 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (2 \cdot 53^2)P \text{ has order 89, and}$ $S = (2 \cdot 53^2)Q \text{ is multiple of } R.$ Compute $a_4 = \log_R S \equiv a \mod 89.$

Use Chinese Remainder Theorem

 $a \equiv a_1 \mod 2$, $a \equiv a_2 \mod 53$, $a \equiv a_4 \mod 89$,

to determine a modulo $2 \cdot 53 \cdot 89$. Cost: $1 + \sqrt{53\pi/2} + \sqrt{89\pi/2}$. Note that cost counts steps, ignores computation of *R* and *S*.

But this misses a 53. Brute force search in residue class: cost + 53.

Are we there, yet?

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 89)P$ has order 53^2 , and

 $S = (2 \cdot 89)Q$ is multiple of R.

Compute $a_5 = \log_R S \equiv a \mod 53^2$.

Are we there, yet?

 $R = (53^2 \cdot 89)P \text{ has order 2, and}$ $S = (53^2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_1 = \log_R S \equiv a \mod 2.$ $R = (2 \cdot 89)P \text{ has order } 53^2, \text{ and}$ $S = (2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_5 = \log_R S \equiv a \mod 53^2.$ $R = (2 \cdot 53^2)P \text{ has order } 89, \text{ and}$ $S = (2 \cdot 53^2)Q \text{ is multiple of } R.$

Compute $a_4 = \log_R S \equiv a \mod 89$.

Use Chinese Remainder Theorem to determine *a* modulo $2 \cdot 53^2 \cdot 89$.

$$a \equiv a_1 \mod 2$$
,
 $a \equiv a_5 \mod 53^2$,
 $a \equiv a_4 \mod 89$,

Are we there, yet?

 $R = (53^2 \cdot 89)P \text{ has order 2, and}$ $S = (53^2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_1 = \log_R S \equiv a \mod 2.$ $R = (2 \cdot 89)P \text{ has order } 53^2, \text{ and}$ $S = (2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_5 = \log_R S \equiv a \mod 53^2.$

 $R = (2 \cdot 53^2)P$ has order 89, and $S = (2 \cdot 53^2)Q$ is multiple of R. Compute $a_4 = \log_R S \equiv a \mod 89$.

Use Chinese Remainder Theorem to determine *a* modulo $2 \cdot 53^2 \cdot 89$.

$$a \equiv a_1 \mod 2$$
,
 $a \equiv a_5 \mod 53^2$,
 $a \equiv a_4 \mod 89$,

Cost $1 + \sqrt{53^2 \pi/2} + \sqrt{89\pi/2} = 79.24$ instead of cost $1 + \sqrt{53\pi/2} + \sqrt{89\pi/2} + 53$

Are we there, yet? This is not Pohlig-Hellman

 $R = (53^2 \cdot 89)P \text{ has order } 2, \text{ and } S = (53^2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 89)P \text{ has order } 53^2, \text{ and } S = (2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_5 = \log_R S \equiv a \mod 53^2$. $R = (2 \cdot 53^2)P \text{ has order } 89, \text{ and } S = (2 \cdot 53^2)Q \text{ is multiple of } R.$ Compute $a_4 = \log_R S \equiv a \mod 89.$

Use Chinese Remainder Theorem to determine a modulo $2 \cdot 53^2 \cdot 89$.

$$a \equiv a_1 \mod 2$$
,
 $a \equiv a_5 \mod 53^2$,
 $a \equiv a_4 \mod 89$,

Cost $1 + \sqrt{53^2 \pi/2} + \sqrt{89\pi/2} = 79.24$ instead of cost $1 + \sqrt{53\pi/2} + \sqrt{89\pi/2} + 53 = 74.94$.

Ratio would look worse without Pollard rho (no square roots): $1 + 2 \cdot 53 + 89 = 196$ vs $1 + 53^2 + 89 = 2899$.

 $R = (53^2 \cdot 89)P \text{ has order 2, and}$ $S = (53^2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_1 = \log_R S \equiv a \mod 2.$ $R = (2 \cdot 53 \cdot 89)P \text{ has order 53, and}$ $S = (2 \cdot 53 \cdot 89)Q \text{ is multiple of } R.$

Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (53^2 \cdot 89)P \text{ has order 2, and}$ $S = (53^2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 53 \cdot 89)P \text{ has order 53, and}$ $S = (2 \cdot 53 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_2 = \log_R S \equiv a \mod 53$. $T = (2 \cdot 89)(Q - a_2P) = (2 \cdot 89)(a - a_2)P \text{ is multiple of } R$ because $a - a_2 \equiv 0 \mod 53$, i.e. $a - a_2 = 53a' \text{ and } T = (2 \cdot 89 \cdot 53)a'P$. Compute $a_3 = \log_R T$

 $R = (53^2 \cdot 89)P \text{ has order 2, and}$ $S = (53^2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 53 \cdot 89)P \text{ has order 53, and}$ $S = (2 \cdot 53 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_2 = \log_R S \equiv a \mod 53$. $T = (2 \cdot 89)(Q - a_2P) = (2 \cdot 89)(a - a_2)P \text{ is multiple of } R$ because $a - a_2 \equiv 0 \mod 53$, i.e. $a - a_2 = 53a' \text{ and } T = (2 \cdot 89 \cdot 53)a'P$. Compute $a_3 = \log_R T \equiv a' \mod 53$.

 $R = (53^2 \cdot 89)P \text{ has order 2, and}$ $S = (53^2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 53 \cdot 89)P \text{ has order 53, and}$ $S = (2 \cdot 53 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_2 = \log_R S \equiv a \mod 53$. $T = (2 \cdot 89)(Q - a_2P) = (2 \cdot 89)(a - a_2)P \text{ is multiple of } R$ because $a - a_2 \equiv 0 \mod 53$, i.e. $a - a_2 = 53a' \text{ and } T = (2 \cdot 89 \cdot 53)a'P$. Compute $a_3 = \log_R T \equiv a' \mod 53$. Note $a_2 + 53a_3 \equiv a \mod 53^2$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$. $T = (2 \cdot 89)(Q - a_2 P) = (2 \cdot 89)(a - a_2)P$ is multiple of R because $a - a_2 \equiv 0 \mod{53}$, i.e. $a - a_2 = 53a'$ and $T = (2 \cdot 89 \cdot 53)a'P$. Compute $a_3 = \log_R T \equiv a' \mod 53$. Note $a_2 + 53a_3 \equiv a \mod 53^2$. $R = (2 \cdot 53^2)P$ has order 89, and $S = (2 \cdot 53^2)Q$ is multiple of R. Compute $a_4 = \log_R S \equiv a \mod 89$. Use Chinese Remainder Theorem to determine a modulo $2 \cdot 53^2 \cdot 89$.

$$a \equiv a_1 \mod 2$$
,
 $a \equiv a_2 + 53a_3 \mod 53^2$,
 $a \equiv a_4 \mod 89$,

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$. $T = (2 \cdot 89)(Q - a_2 P) = (2 \cdot 89)(a - a_2)P$ is multiple of R because $a - a_2 \equiv 0 \mod{53}$, i.e. $a - a_2 = 53a'$ and $T = (2 \cdot 89 \cdot 53)a'P$. Compute $a_3 = \log_R T \equiv a' \mod 53$. Note $a_2 + 53a_3 \equiv a \mod 53^2$. $R = (2 \cdot 53^2)P$ has order 89, and $S = (2 \cdot 53^2)Q$ is multiple of R. Compute $a_4 = \log_R S \equiv a \mod 89$. Use Chinese Remainder Theorem to determine a modulo $2 \cdot 53^2 \cdot 89$.

$$a \equiv a_1 \mod 2,$$

$$a \equiv a_2 + 53a_3 \mod 53^2,$$

$$a \equiv a_4 \mod 89,$$

Cost $1 + 2\sqrt{53\pi/2} + \sqrt{89\pi/2} = 31.07 < 74.94$.

Tanja Lange

Discrete logarithm problem VI