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Back to our running example

y2 = x3 − x over Fp, p = 1000003.

P = (101384, 614510) has order 2 · 532 · 89.

Given Q = aP = (670366, 740819), find a = logP Q

R = (532 · 89)P has order 2, and
S = (532 · 89)Q is multiple of R.

Easy to compute a1 = logR S .
Note S = (532 · 89)Q = (532 · 89)aP and (2 · 532 · 89)P =∞.

I a even, i.e., a = 2a′: S = (532 · 89)2a′P = a′∞ =∞
I a odd, i.e., a = 2a′ + 1: S = (532 · 89)(2a′ + 1)P = (532 · 89)P 6=∞

R = (2 · 53 · 89)P has order 53, and
S = (2 · 53 · 89)Q is multiple of R.

Compute a2 = logR S ≡ a mod 53. This is a DLP in a group of size 53.

Takes more effort than size 2, but much easier than size 500002.

Can use Pollard rho to attack this subgroup problem in
√

53π/2 steps.
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Running example continued
P = (101384, 614510) has order 2 · 532 · 89.

R = (532 · 89)P has order 2, and
S = (532 · 89)Q is multiple of R.
Compute a1 = logR S ≡ a mod 2.

R = (2 · 53 · 89)P has order 53, and
S = (2 · 53 · 89)Q is multiple of R.
Compute a2 = logR S ≡ a mod 53.

R = (2 · 532)P has order 89, and
S = (2 · 532)Q is multiple of R.
Compute a4 = logR S ≡ a mod 89.

Use Chinese Remainder Theorem
a ≡ a1 mod 2,
a ≡ a2 mod 53,
a ≡ a4 mod 89,

to determine a modulo 2 · 53 · 89. Cost: 1 +
√

53π/2 +
√

89π/2.
Note that cost counts steps, ignores computation of R and S .

But this misses a 53. Brute force search in residue class: cost +53.
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Are we there, yet?
R = (532 · 89)P has order 2, and
S = (532 · 89)Q is multiple of R.
Compute a1 = logR S ≡ a mod 2.

R = (2 · 89)P has order 532, and
S = (2 · 89)Q is multiple of R.
Compute a5 = logR S ≡ a mod 532.

R = (2 · 532)P has order 89, and
S = (2 · 532)Q is multiple of R.
Compute a4 = logR S ≡ a mod 89.

Use Chinese Remainder Theorem to determine a modulo 2 · 532 · 89.
a ≡ a1 mod 2,
a ≡ a5 mod 532,
a ≡ a4 mod 89,

Cost 1 +
√

532π/2 +
√

89π/2 = 79.24 instead of

cost 1 +
√

53π/2 +
√

89π/2 + 53 = 74.94.

Ratio would look worse without Pollard rho (no square roots):
1 + 2 · 53 + 89 = 196 vs 1 + 532 + 89 = 2899.
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Are we there, yet? This is not Pohlig–Hellman
R = (532 · 89)P has order 2, and
S = (532 · 89)Q is multiple of R.
Compute a1 = logR S ≡ a mod 2.

R = (2 · 89)P has order 532, and
S = (2 · 89)Q is multiple of R.
Compute a5 = logR S ≡ a mod 532.
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Pohlig–Hellman for running example
R = (532 · 89)P has order 2, and
S = (532 · 89)Q is multiple of R.
Compute a1 = logR S ≡ a mod 2.

R = (2 · 53 · 89)P has order 53, and
S = (2 · 53 · 89)Q is multiple of R.
Compute a2 = logR S ≡ a mod 53.

T = (2 · 89)(Q − a2P) = (2 · 89)(a− a2)P is multiple of R
because a− a2 ≡ 0 mod 53, i.e. a− a2 = 53a′ and T = (2 · 89 · 53)a′P.
Compute a3 = logR T ≡ a′ mod 53.
Note a2 + 53a3 ≡ a mod 532.

R = (2 · 532)P has order 89, and
S = (2 · 532)Q is multiple of R.
Compute a4 = logR S ≡ a mod 89.

Use Chinese Remainder Theorem to determine a modulo 2 · 532 · 89.
a ≡ a1 mod 2,
a ≡ a2 + 53a3 mod 532,
a ≡ a4 mod 89,

Cost 1 + 2
√

53π/2 +
√

89π/2 = 31.07 < 74.94.
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because a− a2 ≡ 0 mod 53, i.e. a− a2 = 53a′ and T = (2 · 89 · 53)a′P.
Compute a3 = logR T ≡ a′ mod 53.
Note a2 + 53a3 ≡ a mod 532.

R = (2 · 532)P has order 89, and
S = (2 · 532)Q is multiple of R.
Compute a4 = logR S ≡ a mod 89.

Use Chinese Remainder Theorem to determine a modulo 2 · 532 · 89.
a ≡ a1 mod 2,
a ≡ a2 + 53a3 mod 532,
a ≡ a4 mod 89,

Cost 1 + 2
√

53π/2 +
√

89π/2 = 31.07 < 74.94.
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