Discrete logarithm problem V Paralel collision search

Tanja Lange

Eindhoven University of Technology

2MMC10 - Cryptology

How to use more than one computer efficiently?

Tanja Lange

How to use more than one computer efficiently?

Walk to distinguished point, report to some server

Lucky case: two walks end in same distinguished point

- Perform many walks with different starting points.
- Terminate each walk once it hits a distinguished point.
- ▶ Report the distinguished point and its *a_i* and *b_i* to server.
- Server receives, stores, and sorts all distinguished points.
- ► Two walks reaching same distinguished point give collision.
- As before, this collision solves the DLP.

- Perform many walks with different starting points.
- Terminate each walk once it hits a distinguished point.
- ▶ Report the distinguished point and its *a_i* and *b_i* to server.
- Server receives, stores, and sorts all distinguished points.
- ► Two walks reaching same distinguished point give collision.
- As before, this collision solves the DLP.

How to identify distinguished points? Want something efficient to test. Typical: top r bits of x(W) are 0, takes $\approx 2^r$ steps to reach.

- Perform many walks with different starting points.
- Terminate each walk once it hits a distinguished point.
- ▶ Report the distinguished point and its *a_i* and *b_i* to server.
- Server receives, stores, and sorts all distinguished points.
- ► Two walks reaching same distinguished point give collision.
- As before, this collision solves the DLP.

How to identify distinguished points? Want something efficient to test. Typical: top r bits of x(W) are 0, takes $\approx 2^r$ steps to reach.

How frequent should they be?

Infrequent: small number of very long walks, little storage on server, long delay before a collision is recognized. Must not hit cycle!

More frequent: shorter walks, more storage, more communication. Too frequent: very short, degrades to random search.

- Perform many walks with different starting points.
- Terminate each walk once it hits a distinguished point.
- ▶ Report the distinguished point and its *a_i* and *b_i* to server.
- Server receives, stores, and sorts all distinguished points.
- ► Two walks reaching same distinguished point give collision.
- As before, this collision solves the DLP.

How to identify distinguished points? Want something efficient to test. Typical: top r bits of x(W) are 0, takes $\approx 2^r$ steps to reach.

How frequent should they be?

Infrequent: small number of very long walks, little storage on server, long delay before a collision is recognized. Must not hit cycle!

More frequent: shorter walks, more storage, more communication. Too frequent: very short, degrades to random search.

Any choice (unless walk enters cycle without DP) needs \sqrt{n} steps.

- Perform many walks with different starting points.
- Terminate each walk once it hits a distinguished point.
- ▶ Report the distinguished point and its *a_i* and *b_i* to server.
- Server receives, stores, and sorts all distinguished points.
- ► Two walks reaching same distinguished point give collision.
- As before, this collision solves the DLP.

How to identify distinguished points? Want something efficient to test. Typical: top r bits of x(W) are 0, takes $\approx 2^r$ steps to reach.

How frequent should they be?

Infrequent: small number of very long walks, little storage on server, long delay before a collision is recognized. Must not hit cycle!

More frequent: shorter walks, more storage, more communication. Too frequent: very short, degrades to random search.

Any choice (unless walk enters cycle without DP) needs \sqrt{n} steps.

Several speedups, e.g. identifying W and -W, some pitfalls.

Tanja Lange

Discrete logarithm problem V