Discrete logarithm problem III Random walks and cycle finding

Tanja Lange

Eindhoven University of Technology

2MMC10 - Cryptology

Target Q = aP in $\langle P \rangle$. Group has *n* elements.

Make a pseudo-random walk in the group $\langle P \rangle$, where the next step depends on current point: $W_{i+1} = f(W_i)$.

Birthday paradox:

Randomly choosing from n elements picks one element twice after about

Target Q = aP in $\langle P \rangle$. Group has *n* elements.

Make a pseudo-random walk in the group $\langle P \rangle$, where the next step depends on current point: $W_{i+1} = f(W_i)$.

Birthday paradox:

Randomly choosing from *n* elements picks one element twice after about $\sqrt{\pi n/2}$ draws.

Target Q = aP in $\langle P \rangle$. Group has *n* elements.

Make a pseudo-random walk in the group $\langle P \rangle$, where the next step depends on current point: $W_{i+1} = f(W_i)$.

Birthday paradox:

Randomly choosing from *n* elements picks one element twice after about $\sqrt{\pi n/2}$ draws.

Assume that for each point we know $0 \le a_i, b_i < n$ so that $W_i = a_i P + b_i Q$.

Then $W_i = W_j$ means that

$$a_i P + b_i Q = a_j P + b_j Q$$

Target Q = aP in $\langle P \rangle$. Group has *n* elements.

Make a pseudo-random walk in the group $\langle P \rangle$, where the next step depends on current point: $W_{i+1} = f(W_i)$.

Birthday paradox:

Randomly choosing from *n* elements picks one element twice after about $\sqrt{\pi n/2}$ draws.

Assume that for each point we know $0 \le a_i, b_i < n$ so that $W_i = a_i P + b_i Q$.

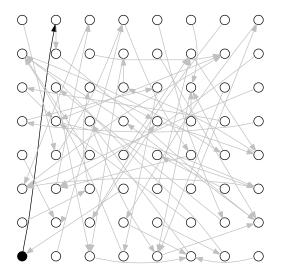
Then $W_i = W_j$ means that

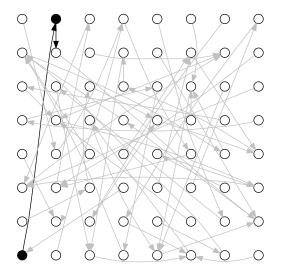
$$a_iP + b_iQ = a_jP + b_jQ \Leftrightarrow (b_i - b_j)Q = (a_j - a_i)P.$$

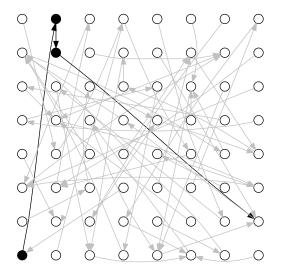
If $b_i - b_j$ invertible modulo *n*, the DLP is solved:

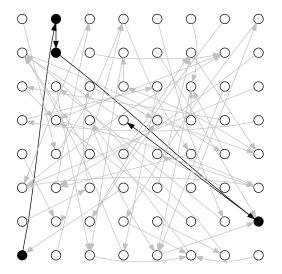
$$a \equiv (a_j - a_i)/(b_i - b_j) \bmod n$$

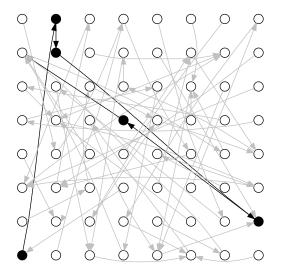
Tanja Lange

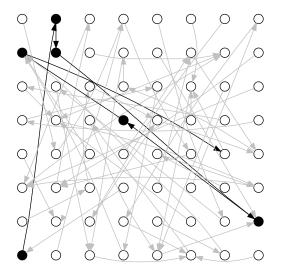


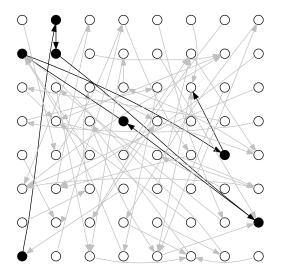


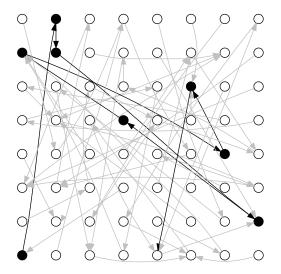


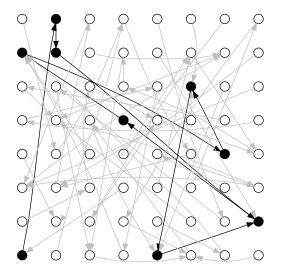


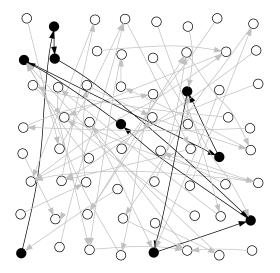


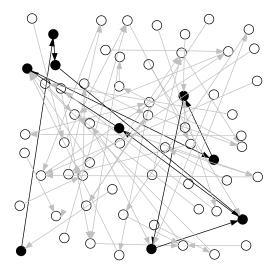


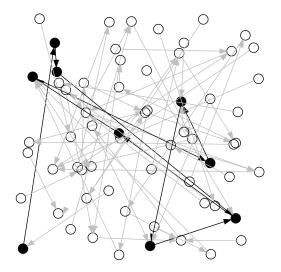


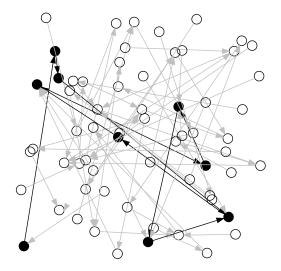


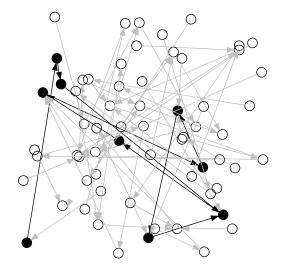


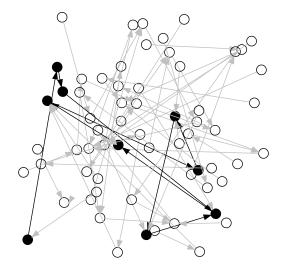


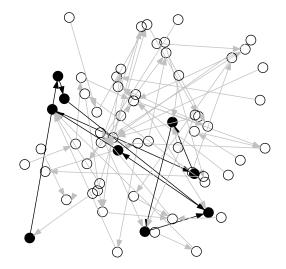


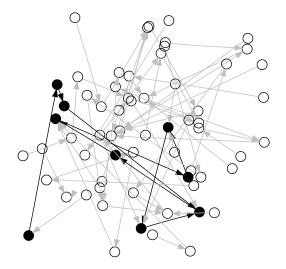


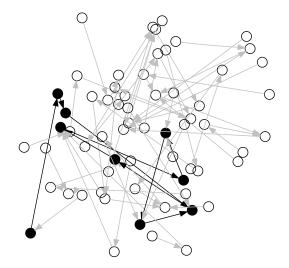


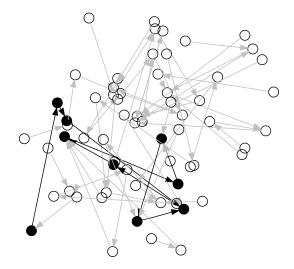


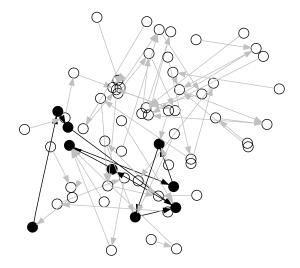


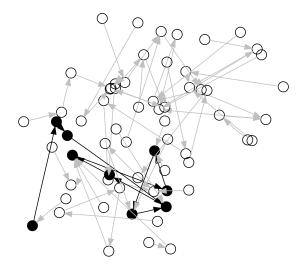


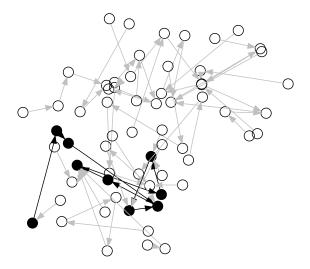


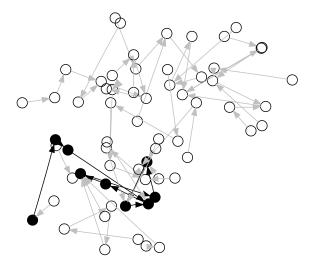


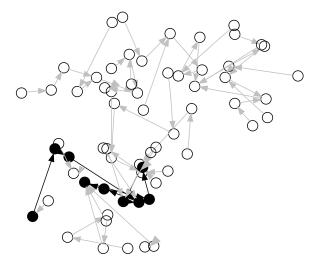


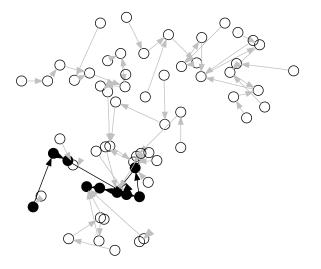


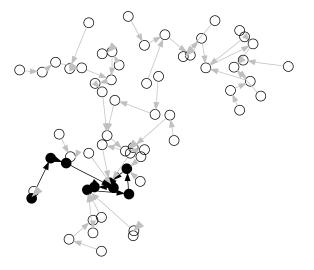


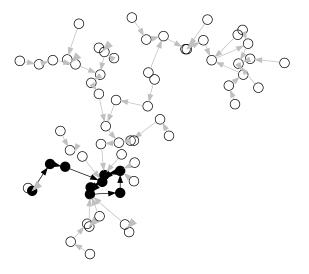


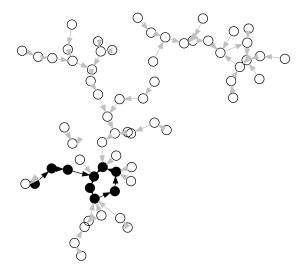


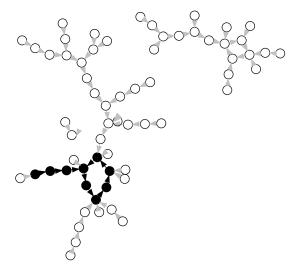










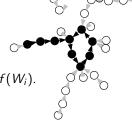


For random mappings: Tail length: $\sqrt{\pi n/8}$ Cycle length: $\sqrt{\pi n/8}$

See Flajolet & Odlyzko URL.

Make a pseudo-random walk in the group $\langle P \rangle$, where the next step depends on current point: $W_{i+1} = f(W_i)$.

After about $\sqrt{\pi n/2}$ steps we have a collision: $W_i = W_j$.



Make a pseudo-random walk in the group $\langle P \rangle$, where the next step depends on current point: $W_{i+1} = f(W_i)$.

After about $\sqrt{\pi n/2}$ steps we have a collision: $W_i = W_j$. Then also $W_{i+1} = W_{j+1}$, $W_{i+2} = W_{j+2}$, $W_{i+3} = W_{j+3}$.

Make a pseudo-random walk in the group $\langle P \rangle$, where the next step depends on current point: $W_{i+1} = f(W_i)$.

After about $\sqrt{\pi n/2}$ steps we have a collision: $W_i = W_j$. Then also $W_{i+1} = W_{j+1}, W_{i+2} = W_{j+2}, W_{i+3} = W_{j+3}, .$

The walk now enters a cycle.

Cycle-finding algorithms (e.g., Floyd) quickly detects this without requiring storage.

Make a pseudo-random walk in the group $\langle P \rangle$, where the next step depends on current point: $W_{i+1} = f(W_i)$.

After about $\sqrt{\pi n/2}$ steps we have a collision: $W_i = W_j$. Then also $W_{i+1} = W_{j+1}, W_{i+2} = W_{j+2}, W_{i+3} = W_{j+3}$.

The walk now enters a cycle. Cycle-finding algorithms (e.g., Floyd) quickly detects this without requiring storage.

Floyd runs two walks, a fast walk F_i and a slow walk S_i . Only compares $F_i \stackrel{?}{=} S_i$, so does not need any older values.

Make a pseudo-random walk in the group $\langle P \rangle$, where the next step depends on current point: $W_{i+1} = f(W_i)$.

After about $\sqrt{\pi n/2}$ steps we have a collision: $W_i = W_j$. Then also $W_{i+1} = W_{j+1}$, $W_{i+2} = W_{j+2}$, $W_{i+3} = W_{j+3}$, $Q_{i+3} = W_{j+3}$.

The walk now enters a cycle. Cycle-finding algorithms (e.g., Floyd) quickly detects this without requiring storage.

Floyd runs two walks, a fast walk F_i and a slow walk S_i . Only compares $F_i \stackrel{?}{=} S_i$, so does not need any older values.

Start at $S_0 = F_0 = W_0$. Each step does $S_{i+1} = f(S_i)$ and $F_{i+1} = f(f(F_i))$. Once both walks enter the cycle, they will collide.

Cycle length: roughly $\sqrt{\pi n/8}$. Fast walk might need to loop a few times.