
Explanation:
Miller Rabin: How to apply?
Check primality of n where n-1=2^r*t , t odd
1. Pick random a>0
2. Compute b≡a^t mod n (congruence)
3. If b in {-1,1} then "probably prime"
4. For i=1 to r-1 do
   a) compute b≡b^2 mod n (assigning to b the new value)
   b) if b ≡ -1 output "probably prime"
   c) if b ≡ 1 output "n not prime"
5. output "n not prime"
    
Iterate this for l choices of a to get probablilty of 2^-l .
    
Why does it work?
Fermat says a^(n-1)≡ a^(t*2^r) ≡ 1 mod n if n is prime 
so in the final squaring we need to reach 1 or n is not prime.
    
If n is prime then there are 2 square roots of 1, namely 1 and -1.
If n = p * q then there are 4 roots, for k different factors there are 2^k roots,
because of CRT.
                
       x^2 ≡1 mod n, let n = p*q.
       x^2 ≡ 1 mod p
       x^2 ≡ 1 mod q
                
p and q are primes, so there 2 squareroots This gives 4 different CRT systems
x ≡ +/-1 mod p
x ≡ +/-1 mod q
with signs taken independently, these give 4 different solutions, namely
x≡1 mod n for both choices +, x≡-1 mod n if both choices are - and a different solution x≡c mod n in the 
case of + for p, - for q and -c in the other.
If we find c with c^2 ≡ 1 mod n and c is not +/-1 then n cannot be prime.

Miller Rabin tries to find such c, knowing that a^(n-1) ≡1, and we can compute r square roots of that -- by
building the powers of a^t by squaring. If Fermat holds, we must compute 1 eventually, and if n is prime, 
we must have encountered -1 before that.
This covers the for loop, if a^t is already 1 then we don't get any information.


