
Cryptography, homework sheet 5
Due for 2MMC10: 08 October 2020, 10:45

and for Mastermath: 12 November 2020, 10:45

Please submit your homework by email to crypto.course@tue.nl and put your team mates
in cc to that email. Also mention their names and student numbers in the body of the email
(yes, neatly typed so that we can copy it easily).

Team up in groups of two or three to hand in your homework. We do not have capacity to
correct all homeworks individually. Do not email Tanja your homework or put homework in
mailboxes.
Make sure to justify your answers. You do not need to document intermediate results of
exponentiations or modular inversion. However, you should include all intermediate results
of the algorithms that constitute a step.
You may use computer algebra systems such as mathematica, gp, or sage or program in C,
Java, or Python. Please submit your code if any) as part of your homework. If you do, make
sure that your programs compile and run correctly; the TAs will not debug your programs.
The program should also be humanly readable. Do not include the code in the pdf of your
homework submission but submit it as a separate file.

1. Use the schoolbook version of Pollard’s rho method to attack the discrete logarithm
problem given by g = 3, h = 245 in IF∗1013, i.e. find an integer 0 < a < 1012 such that
h = ga, using Floyd’s cylce finding method. The step function is as defined in class
(and repeated here).

Define the update function as

x←


x · g
x · h,
x2

b←


b + 1
b,
2b

c←


c
c + 1,
2c

for x ≡


0 mod 3
1 mod 3.
2 mod 3

Start the fast walk at xf = g, bf = 1, and cf = 0 and the slow walk at xs = g, bs = 1,
and cs = 0. The fast walk does two steps in one iteration while the slow walk does one.
You may compare the results only after an iteration is complete.

2. Use factor base F = {2, 3, 5, 7, 11, 13} to solve the DLP h = 281, g = 2, in IF∗1019.
I.e. pick random powers of g = 2, check whether they factor into products of powers
of 2,3,5,7,11, and 13; if so, add a relation to a matrix. The columns of the matrix
correspond to the discrete logs of 2,3, 5,7,11, and 13. Once you have 6 rows try to solve
the matrix; note that these computations take place modulo the group order 1018. It
might be that some of the rows are linearly dependent, in that case you need to generate
another relation. Once you have all discrete logs of the primes in the factor base, check
whether h is smooth and if not find a hgi (for some i) which is smooth. You only need to
document the successful choices of i or submit a working program that has comments.

Here are two examples. Let aj = logg j. 2291 ≡ 52 mod 1019; over the integers 52 =
22 · 13, so we incluclude the relation 291 ≡ 2a2 + a13 mod 1018. Note that you can run
into difficulties inverting modulo 1018 since it is not prime. E.g. 2658 ≡ 729 mod 1019;
over the integers 729 = 36, so we incluclude the relation 658 ≡ 6a3 mod 1018 but
6 is not invertible modulo 1018 and we can only determine a3 ≡ 449 mod 509 and
need to test whether a3 = 449 or a3 = 449 + 509. Here 2449 ≡ 1016 mod 1019 and
2449+509 ≡ 3 mod 1019, thus a3 = 958. [ Now you only need 5 more.]



3. Here is a toy version of a Wegman-Carter message authentication code with which A
and B can authenticate t messages: Fix p = 1000003. A and B randomly generate
r ∈ IF∗p and randomly pick integers s1, s2, . . . , st ∈ {0, 1, 2, . . . 999999}. These values are
the shared secrets; r is the overall secret and the si are per message secrets.

To authenticate the i-th message mi the sender expresses mi in base 106 as mi =
mi,0 + mi,1106 + mi,21012 + ... + mi,n106n and computes the authenticator as

auth(mi) = (mi,0r + mi,1r
2 + mi,2r

3 + ... + mi,nr
n+1 mod p) + si mod 1000000.

For simplicity we will do i = 1 and omit the extra indices. Compute the authenticator
for m = 454356542435979283475928437, r = 483754, s = 342534.

4. The above (and what was shown in the lecture) are correct examples of Wegman–Carter
MACs. A more general set up specifies a prime p and 2k a power of 2 less than p. (Com-
puters prefer binary representation over decimal). Messages have nk bits. A and B agree
on r ∈ IF∗p and s1, s2, . . . , st < 2k. To authenticate message mi = (mi1,mi2, . . . ,min),

with 0 ≤ mij < 2k, the sender computes auth(mi) = (
∑n

j=1mijr
j mod p) + si mod 2k

and sends (mi, auth(mi), i).

Show that it is important that the powers of r starts at r1 rather than at r0, i.e., show
how an outside attacker who does not have access to r or any of the si but sees some
(mi, auth′(mi), i) can compute some valid (m, auth′(m), i) on a new message m 6= mi

for auth′(m) = (
∑n−1

j=0 mj+1r
j mod p) + si mod 2k.


