
Cryptolgoy homework sheet 1
Due: 10 September 2020, 10:45 for students of 2MMC10 and

17 September 2020, 10:45 for students following the MasterMath course.

Please hand in your homework in groups of two or three. Do not submit your homework
alone.
Please submit your homework by email to crypto.course@tue.nl and put your team
mates in cc to that email. Also mention their names and student numbers in the body of
the email (yes, neatly typed so that we can copy it easily).

You can use a calculator or some computer algebra system for these exercises, but make
sure to document all intermediate computations.
If the math background in the lecture of 03 September was new to you, solve some compu-
ations by hand and varify your result by using a computar algebra system. I recommend
using Pari-GP if you don’t have any installed, yet. See below for an algorithms for CRT.
Sage is more powerful than Pari-GP but it is a bit too powerful.

1. Execute the RSA key generation where p = 239, q = 433, and e = 23441.

2. RSA-encrypt the message 23 to a user with public key (e, n) = (17, 11584115749).
Document how you compute the exponentiation with square and multiply, reducing
the result after each step.

3. Compute 1524 mod 72 twice – once using square and multiply (document the inter-
mediate steps) and once using the Chinese Remainder Theorem with calculations
modulo 8 and modulo 9. Remember to reduce the exponents and the base in the
CRT calculation and take a moment to think what moduli to use and to check the
conditions.

4. Perform one round of the Fermat test with base
a = 2 to test whether 31 is prime.

5. Security proofs in crypto are usually allowing the attacker access to a decryption
oracle, i.e. an algorithm that returns the decryption of any valid ciphertext. In the
schoolbook version of RSA presented in class, any ciphertext is valid. The attacker
wins if he finds the plaintext m belonging to ciphertext c without ever asking the
oracle for a decryption of c itself; any c′ 6≡ c mod n is fair game.

Show how the attacker can recover m from c ≡ me mod n with one oracle query and
some (easy) computation.

This exercise shows you that schoolbook RSA should not be used in practice.

http://pari.math.u-bordeaux.fr/
https://www.sagemath.org/


Reminder on how the Chinese Remainder Theorem works:

Theorem 1 (Chinese Remainder Theorem)
Let r1, . . . , rk ∈ ZZ and let 0 6= n1, . . . , nk ∈ IN such that the ni are pairwise coprime. The
system of congruences

X ≡ r1 mod n1,

X ≡ r2 mod n2,
...

X ≡ rk mod nk,

has a solution X which is unique up to multiples of N = n1 · n2 · · ·nk. The set of all
solutions is given by {X + aN |a ∈ ZZ} = X + NZZ.

If the ni are not all coprime the system might not have a solution at all. E.g. the system
X ≡ 1 mod 8 and X ≡ 2 mod 6 does not have a solution since the first congruence
implies that X is odd while the second one implies that X is even. If the system has a
solution then it is unique only modulo lcm(n1, n2, . . . , nk). E.g. the system X ≡ 4 mod 8
and X ≡ 2 mod 6 has solutions and the solutions are unique modulo 24. Replace
X ≡ 2 mod 6 by X ≡ 2 mod 3; the system still carries the same information but has

coprime moduli and we obtain X = 8a + 4 ≡ 2a + 1
!≡ 2 mod 3, thus a ≡ 2 mod 3 and

X = 8(3b + 2) + 4 = 24b + 20. The smallest positive solution is thus 20.

We now present a constructive algorithm to find the solution promised by the CRT, making
heavy use of the extended Euclidean algorithm (see below). Let Ni = N/ni. Since all ni

are coprime, we have gcd(ni, Ni) = 1 and we can compute ui and vi with

uini + viNi = 1.

Let ei = viNi, then this equation becomes uini + ei = 1 or ei ≡ 1 mod ni. Furthermore,
since all nj|Ni for j 6= i we also have ei = viNi ≡ 0 mod nj for j 6= i.
Using these values ei a solution to the system of equivalences is given by

X ≡
k∑

i=1

riei mod N,

since X satisfies X ≡ ri mod ni for each 1 ≤ i ≤ k.

Example 2 Consider the system of integer congruences

X ≡ 1 mod 3,

X ≡ 2 mod 5,

X ≡ 5 mod 7.



The moduli are coprime and we have N = 105. For n1 = 3, N1 = 35 we get v1 = 2 by just
observing that 2 · 35 = 70 ≡ 1 mod 3. So e1 = 70.
Next we compute N2 = 21 and see v2 = 1 since 21 ≡ 1 mod 5. This gives e2 = 21. Finally,
N3 = 15 and v3 = 1 so that e3 = 15.
The result is X = 70 + 2 · 21 + 5 · 15 = 187 which indeed satisfies all 3 congruences. To
obtain the smallest positive result we reduce 187 modulo N to obtain 82.

For easier reference we phrase this approach as an algorithm.

Algorithm 3 (Chinese remainder computation)
IN: system of k equivalences as (r1, n1), (r2, n2), . . . (rk, nk) with pairwise coprime ni

OUT: smallest positive solution to system

1. N ← ∏k
i=1 ni

2. X ← 0

3. for i = 1 to k

(a) M ← N div ni

(b) v ← (M−1 mod ni) (use XGCD)

(c) e← vM

(d) X ← X + rie

4. X ← X mod N

Just because some people might not have seen XGCD as an algorithm, here is a description
of XGCD. This description assumes that the input elements f, g live in some ring R in
which the greatest common divisor is defined. We will usually use the XGCD on integers
or polynomials. If the inputs are integers you can ignore the part the leading coefficient.

Algorithm 4 (Extended Euclidean algorithm)
IN: f, g ∈ R
OUT: d, u, v ∈ R with d = uf + vg

1. a← [f, 1, 0]

2. b← [g, 0, 1]

3. repeat

(a) c← a− (a[1] div b[1])b

(b) a← b

(c) b← c



while b[1] 6= 0

4. l← LC(a[1]), a← a/l /*LC = leading coefficient, this only applies to polynomials*/

5. d← a[1], u← a[2], v ← a[3]

6. return d, u, v

In this algorithm, div denotes division with remainder. The first component of c is thus
easier written as c[1] ← a[1] mod b[1] but by operating on the whole vector we get to
update the values leading to u and v, too. At each step we have

a[1] = a[2]f + a[3]g and b[1] = b[2]f + b[3]g.

To see this, note that this holds trivially for the initial conditions. If it holds for both a
and b then also for c since it computes a linear relation of both vectors. So each update
maintains the relation and eventually when b[1] = 0, we have that a[1] holds the previous
remainder, which is the gcd of f and g. If the inputs are polynomials, at the end the gcd
is made monic by dividing by the leading coefficient LC(a[1]).

Example 5 Let R = IR[x] and f(x) = x5+3x3−x2−4x+1, g(x) = x4−8x3+8x2+8x−9.
So at first we have a = [f, 1, 0], b = [g, 0, 1].

We have (a[1] div b[1]) = x + 8 and so end the first round with

a = [g, 0, 1],

b = [59x3 − 73x2 − 59x + 73, 1,−x− 8].

Indeed b[1] = f(x) + (−x− 8)g(x).

With these new values we have (a[1] div b[1]) = 1/59x− 399/3481 and so the second round
ends with

a = [59x3 − 73x2 − 59x + 73, 1,−x− 8],

b = [2202/3481x2 − 2202/3481,−1/59x + 399/3481, 1/59x2 + 73/3481x + 289/3481].

In the third round we have (a[1] div b[1]) = 205379/2202x− 254113/2202 and obtain

a = [2202/3481x2 − 2202/3481,−1/59x + 399/3481, 1/59x2 + 73/3481x + 289/3481],

b = [0, 3481/2202x2 − 13924/1101x + 10443/734,−3481/2202x3 − 6962/1101x + 3481/2202].

Since b[1] = 0 the loop terminates. We have LC(a[1]) = 2202/3481 and thus normalize to

a = [x2 − 1,−59/2202x + 133/734, 59/2202x2 + 73/2202x + 289/2202].

We check that indeed
x2 − 1 = (−59/2202x + 133/734)(x5 + 3x3 − x2 − 4x + 1)+

(59/2202x2 + 73/2202x + 289/2202)(x4 − 8x3 + 8x2 + 8x− 9).


