
What is an elliptic curve?
An elliptic curve is a smooth projective plane of genus one with at least
one point.

This information together with the theorem of Riemann Roch is enough
to derive that any elliptic curve admits an affine equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

with ai ∈ k , where k is the field where the point is defined.

This equation is the general form of a Weierstrass curve.
[The indices actually make sense if you give y weight 3, x weight 2 and
ask that the weight + index equals 6.]

In algebraic geometry, smooth means that the curve does not have
singularities. Now that we have an equation for the curve we can define
singular using the Jacobi criterion: For fields of characteristic larger than
3

A point P = (xP , yP) on E is singular if (x , y) also satisfies the two
partial derivatives, 2y + a1x + a3 = 0 and a1y = 3x2 + 2a2x + a4.

Note that “point on E” means that the point satisfies the curve
equation. Note also that you need to check this for all points over any
extension field of k .
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Short Weierstrass curves

For fields of characteristic larger than 3 we can transform this equation to
one with fewer variables, called short Weierstrass form.

Valid transformations are those that keep the curve shape the same, so y2

and x3 are monic and no other degrees than in the long equation appear.

This means we can change y ← α3y + βx + γ, x ← α2x + δ, and divide
both sides by α6. Such transforms are called curve isomorphisms.

Our first target is to get rid of the a1xy + a3y term. If the characteristic
is not 2 we can use y ← y − (a1x + a3)/2 to reach the form
y2 = x3 + a′2x

2 + a′4x + a′6.

If the characteristic is not 3 we can similarly get rid of the a′2x
2 term by

using x ← x − a′2/3.

The curve equation y2 = x3 + c4x + c6 is called short Weierstrass form.
(In the lecture we used the also common notation y2 = x3 + ax + b).
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Singularities

Let’s look for singularities in this form, so we look for points on the curve
that satisfy y = 0 and 3x2 + c4 = 0.

A singular point on a curve in short Weierstrass form thus has the form
( , 0). Being on the curve means 0 = x3 + c4x + c6, so we have two
equations for x .

Let’s see whether we have a common root by computing the gcd:
x3 + c4x + c6 = (x/3)(3x2 + c4) + (2c4/3)x + c6
3x2 + c4 = (9/(2c4)x − (27c6/4c4))((2c4/3)x + c6) + c4 − 27c26/(4c24 )
A singularity exists if and only if the remainder is 0, i.e. if
c4 − 27c26/(4c24 ) = 0, i.e.

4c34 − 27c26 = 0.

This was the condition given in class (as 4a3 − 27b2)
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How about double roots?

If the curve has the form

y2 = (x − x0)(x − x1)2

then the partial derivatives are y = 0 and
0 = (x − x1)2 + 2(x − x0)(x − x1) using the chain law and (x1, 0) is a
point on the curve that satisfies both partial derivatives, thus is a singular
point.

Since an elliptic curve is non singular, the case of two identical roots
cannot appear.
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Tangents to the curve and points with multiplicity
Definition: If P,Q,R are on a line then P + Q + R =∞.

•
P1

•P2

•−(P1 + P2)

•P1 + P2

x
//

yOO
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Tangents to the curve and points with multiplicity
Definition: If P,Q,R are on a line then P + Q + R =∞.

•
P

•
R = −(2P)

• 2P

x
//

yOO
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Optimization

When using cyrptosystems in practice, they need to be implemented and
users want fast formulas.

For fields of large characteristic (typically prime fields) and rings modulo
integers (like for RSA), inversions/divisions are a lot more expensive than
multiplications. The EFD uses a ratio of I = 100 M for the ranking of
different formulas (scroll a bit down to see the tables).

The relative cost of multiplication to squaring is less clear: If
implementations use the same code for both, they take the same time. If
there is separate code then ratios of S= 0.8M or S= 0.6M are reasonable.

If the designer can choose the constants (under the condition that the
system is secure) they can typically achieve that the constants are much
smaller – sometimes small enough to just do additions, essentially always
at most one word (this matters as most moduli require multi-precision
arithmetic).
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Montgomery curves
Montgomery curves are a special form of elliptic curves which can be
written in the form

Bv2 = u3 + Au2 + u.

This almost matches the Weierstrass equation given above and the
addition law is very similar.

If u1 6= u2 then λ = (v1 − v2)/(u1 − u2);
if u1 = u2 and v1 = v2 6= 0 then λ = (3u21 + 2Au1 + 1)/(2Bv1).
In both cases

u3 = Bλ2 − A− u1 − u2, v3 = λ(u1 − u3)− v1

As on Weierstrass curves:
−(u1, v1) = (u1,−v1) and ∞ is the neutral element.

Montgomery curves always have a point (0, 0) of order 2 and at least one
of the following

I u2 + Au + 1 = (u − u1)(u − u2), giving (u1, 0), (u2, 0) of order 2;
I there is a point of order 4.

Hence, the group order is always divisible by 4.

Every Montgomery curve can be transformed to a twisted Edwards curve
and vice versa.
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Birational equivalences
Two curves are birationally equivalent if there exust maps between the
curves given by fractions of polynomials (rational maps) which map
almost all points on one curve to the other and almost all points of the
other to the frist and which are compatible with the group law, i.e.

φ1 : E1 → E2, φ2 : E2 → E1, φi (P + Q) = φi (P) + φi (Q),

where φi are rational maps and for all P,Q,P + Q on Ei where φi is
defined.

Twisted Edwards cuve Ea,d : ax2 + y2 = 1 + dx2y2 is birationally
equivalent to Montgomery curve MA,B : Bv2 = u3 + Au2 + u for

A = 2(a + d)/(a− d),B = 4/(a− d)⇔ a = (A + 2)/B, d = (A− 2)/B

mapping

u = (1 + y)/(1− y), v = u/x ⇔ x = u/v , y = (u − 1)/(u + 1).

These have exceptions at

(0, 0), (u1, 0), (u2, 0), (−1,±
√

(A− 2)/B),∞
on MA,B and (0, 1), (0,−1) and any points at infinity on Ea,d if those
points exist.
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