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Theorem by Howgrave-Graham

Let g(x) =
∑d−1

i=0 gix
i ∈ Z[x ] of deg(g) = d − 1.

Let m, b ∈ Z>0

If

1. g(x0) ≡ 0 mod bm with |x0| ≤ X ,

2. ||g(xX )|| ≤ bm/
√
d

then g(x0) = 0 over Z.

Here ||g(xX )|| =
√
g2
0 + g2

1X
2 + · · ·+ g2

d−1X
2(d−1) is the Euclidean

norm of the coefficient vector of g(xX ).

Tanja Lange Dixon’s method of random squares 2



Theorem by Howgrave-Graham

Let g(x) =
∑d−1

i=0 gix
i ∈ Z[x ] of deg(g) = d − 1.

Let m, b ∈ Z>0

If

1. g(x0) ≡ 0 mod bm with |x0| ≤ X ,

2. ||g(xX )|| ≤ bm/
√
d

then g(x0) = 0 over Z.

Here ||g(xX )|| =
√
g2
0 + g2

1X
2 + · · ·+ g2

d−1X
2(d−1) is the Euclidean

norm of the coefficient vector of g(xX ).

If x0 ≡ 0 mod bm and |x0| < bm then

Tanja Lange Dixon’s method of random squares 2



Theorem by Howgrave-Graham

Let g(x) =
∑d−1

i=0 gix
i ∈ Z[x ] of deg(g) = d − 1.

Let m, b ∈ Z>0

If

1. g(x0) ≡ 0 mod bm with |x0| ≤ X ,

2. ||g(xX )|| ≤ bm/
√
d

then g(x0) = 0 over Z.

Here ||g(xX )|| =
√
g2
0 + g2

1X
2 + · · ·+ g2

d−1X
2(d−1) is the Euclidean

norm of the coefficient vector of g(xX ).

If x0 ≡ 0 mod bm and |x0| < bm then x0 = 0.

Tanja Lange Dixon’s method of random squares 2



Theorem by Howgrave-Graham

Let g(x) =
∑d−1

i=0 gix
i ∈ Z[x ] of deg(g) = d − 1.

Let m, b ∈ Z>0

If

1. g(x0) ≡ 0 mod bm with |x0| ≤ X ,

2. ||g(xX )|| ≤ bm/
√
d

then g(x0) = 0 over Z.

Here ||g(xX )|| =
√
g2
0 + g2

1X
2 + · · ·+ g2

d−1X
2(d−1) is the Euclidean
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If x0 ∈ bmZ and |x0| < bm then x0 = 0.

If g(x0) ∈ bmZ and |g(x0)| < bm then g(x0) = 0.
Putting in bound on x0 and expanding the absolute value.
If g(x0) ∈ bmZ, |x0| < X , |g0| ≤ bm/d , |g1X | ≤ bm/d ,
|g2X 2| ≤ bm/d , . . . , |gd−1X d−1| ≤ bm/d then g(x0) = 0.

Now just square, sum up and take the squre root on both sides:∑d−1
i=0 g2

i X
2i ≤

∑d−1
i=0 b2m/d2 = b2m/d .

Tanja Lange Dixon’s method of random squares 2



Theorem by Howgrave-Graham

Let g(x) =
∑d−1

i=0 gix
i ∈ Z[x ] of deg(g) = d − 1.

Let m, b ∈ Z>0

If

1. g(x0) ≡ 0 mod bm with |x0| ≤ X ,

2. ||g(xX )|| ≤ bm/
√
d

then g(x0) = 0 over Z.

Here ||g(xX )|| =
√
g2
0 + g2

1X
2 + · · ·+ g2

d−1X
2(d−1) is the Euclidean

norm of the coefficient vector of g(xX ).

If x0 ∈ bmZ and |x0| < bm then x0 = 0.
If g(x0) ∈ bmZ and |g(x0)| < bm then g(x0) = 0.

Putting in bound on x0 and expanding the absolute value.
If g(x0) ∈ bmZ, |x0| < X , |g0| ≤ bm/d , |g1X | ≤ bm/d ,
|g2X 2| ≤ bm/d , . . . , |gd−1X d−1| ≤ bm/d then g(x0) = 0.

Now just square, sum up and take the squre root on both sides:∑d−1
i=0 g2

i X
2i ≤

∑d−1
i=0 b2m/d2 = b2m/d .

Tanja Lange Dixon’s method of random squares 2



Theorem by Howgrave-Graham

Let g(x) =
∑d−1

i=0 gix
i ∈ Z[x ] of deg(g) = d − 1.

Let m, b ∈ Z>0

If

1. g(x0) ≡ 0 mod bm with |x0| ≤ X ,

2. ||g(xX )|| ≤ bm/
√
d

then g(x0) = 0 over Z.

Here ||g(xX )|| =
√
g2
0 + g2

1X
2 + · · ·+ g2

d−1X
2(d−1) is the Euclidean

norm of the coefficient vector of g(xX ).

If x0 ∈ bmZ and |x0| < bm then x0 = 0.
If g(x0) ∈ bmZ and |g(x0)| < bm then g(x0) = 0.
Putting in bound on x0 and expanding the absolute value.
If g(x0) ∈ bmZ, |x0| < X , |g0| ≤ bm/d , |g1X | ≤ bm/d ,
|g2X 2| ≤ bm/d , . . . , |gd−1X d−1| ≤ bm/d then g(x0) = 0.

Now just square, sum up and take the squre root on both sides:∑d−1
i=0 g2

i X
2i ≤

∑d−1
i=0 b2m/d2 = b2m/d .

Tanja Lange Dixon’s method of random squares 2



Theorem by Howgrave-Graham

Let g(x) =
∑d−1

i=0 gix
i ∈ Z[x ] of deg(g) = d − 1.

Let m, b ∈ Z>0

If

1. g(x0) ≡ 0 mod bm with |x0| ≤ X ,

2. ||g(xX )|| ≤ bm/
√
d

then g(x0) = 0 over Z.

Here ||g(xX )|| =
√
g2
0 + g2

1X
2 + · · ·+ g2

d−1X
2(d−1) is the Euclidean

norm of the coefficient vector of g(xX ).

If x0 ∈ bmZ and |x0| < bm then x0 = 0.
If g(x0) ∈ bmZ and |g(x0)| < bm then g(x0) = 0.
Putting in bound on x0 and expanding the absolute value.
If g(x0) ∈ bmZ, |x0| < X , |g0| ≤ bm/d , |g1X | ≤ bm/d ,
|g2X 2| ≤ bm/d , . . . , |gd−1X d−1| ≤ bm/d then g(x0) = 0.

Now just square, sum up and take the squre root on both sides:∑d−1
i=0 g2

i X
2i ≤

∑d−1
i=0 b2m/d2 = b2m/d .

Tanja Lange Dixon’s method of random squares 2



What to look for?

We want to find a polynomial g(x) and a root x0 so that g(x0) ∈ bmZ.

Here are some polynomials that work:
g(x) ∈ bmZ + bmxZ + bmx2Z + bmx3Z · · · .

We have some polynomial f (x) to start with and know that
f (x0) ∈ bmZ for the x0 we’re looking for.

If deg(f ) = t then we’re looking for
g(x) ∈ bmZ + bmxZ + bmx2Z + · · ·+ bmx t−1Z + f (x)Z.
The polynomial f takes care of the bm for x t .

If that’s too restrictive we can expand to
g(x) ∈
bmZ+bmxZ+bmx2Z+ · · ·+bmx t−1Z+ f (x)Z+xf (x)Z+x2f (x)Z+ · · · .
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What to look for and how to find it?

All of these attacks start by finding sme polynomial deg(f ) = t for which
we a root modulo bm is intersting. Let deg(f ) = t and let |x0| ≤ X for
some known X .

To find
g(x) ∈
bmZ+bmxZ+bmx2Z+ · · ·+bmx t−1Z+ f (x)Z+xf (x)Z+x2f (x)Z+ · · ·
we will use LLL, which builds integer linear combinations of the input
rows of a matrix. It returns a vector that is short in the Euclidean norm.
(Hence we wanted that in the Howgrave-Graham theorem).

We set up a system of equations in the coeffient vectors, one row per
option. bmZ turns into coefficient bm at the x0 column etc.

For Howgrave-Graham we need to scale the column of x s by X s . So we
get (

X a
0 n

)
for knowing part of p.

Tanja Lange Dixon’s method of random squares 4



What to look for and how to find it?

All of these attacks start by finding sme polynomial deg(f ) = t for which
we a root modulo bm is intersting. Let deg(f ) = t and let |x0| ≤ X for
some known X .

To find
g(x) ∈
bmZ+bmxZ+bmx2Z+ · · ·+bmx t−1Z+ f (x)Z+xf (x)Z+x2f (x)Z+ · · ·
we will use LLL, which builds integer linear combinations of the input
rows of a matrix. It returns a vector that is short in the Euclidean norm.
(Hence we wanted that in the Howgrave-Graham theorem).

We set up a system of equations in the coeffient vectors, one row per
option. bmZ turns into coefficient bm at the x0 column etc.

For Howgrave-Graham we need to scale the column of x s by X s . So we
get  X 2 aX 0

0 X a
0 0 n


for knowing part of p.

Tanja Lange Dixon’s method of random squares 4



What to look for and how to find it?

All of these attacks start by finding sme polynomial deg(f ) = t for which
we a root modulo bm is intersting. Let deg(f ) = t and let |x0| ≤ X for
some known X .

To find
g(x) ∈
bmZ+bmxZ+bmx2Z+ · · ·+bmx t−1Z+ f (x)Z+xf (x)Z+x2f (x)Z+ · · ·
we will use LLL, which builds integer linear combinations of the input
rows of a matrix. It returns a vector that is short in the Euclidean norm.
(Hence we wanted that in the Howgrave-Graham theorem).

We set up a system of equations in the coeffient vectors, one row per
option. bmZ turns into coefficient bm at the x0 column etc.

For Howgrave-Graham we need to scale the column of x s by X s . So we
get  X 2 aX 0

0 X a
0 0 n

 ?
=

 X 2 2aX a2

0 X a
0 0 n


for knowing part of p.

Tanja Lange Dixon’s method of random squares 4



LLL

Due to Lenstra, Lensra, and Lovász, 1982.

I On input a set of vectors {v1, v2, . . . , vd} output a short vector v ′1
so that v ′1 =

∑
aivi for some ai ∈ Z.

I LLL outputs d vectors which are shorter and more orthogonal.
Each vector is an integer linear combinantion of the inputs.

I LLL uses many elements from Gram-Schmidt orthogonalization:
I for j = 1 to d
I for i = 1 to j − 1
I µij =

〈v∗i ,vj 〉
〈v∗i ,v∗i 〉

I v∗j = vj −
∑j−1

i=1 µijv
∗
i

I Note that the µij are not integers, so the v∗j are not in the lattice.

I A lattice basis is LLL reduced for parameter 0.25 < δ < 1 if
I |µij | ≤ 0.5 for all 1 ≤ j < i ≤ d ,
I (δ − µ2

i−1i )||v∗i−1||2 ≤ ||v∗i ||2.
I This guarantees ||v1|| ≤ (2/

√
4δ − 1)(d−1)/2 det(L)1/d , where det(L)

is the determinant of the lattice.
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LLL algorithm (from Cohen, GTM 138, transposed)
Input: Basis {v1, v2, . . . , vd} of lattice L, 0.25 < δ < 1
Output: LLL reduced basis for L with parameter δ

1. k ← 2, kmax ← 1, v∗1 ← v1, V1 = 〈v1, v1〉
2. if k ≤ kmax go to step 3

else kmax ← k , v∗k ← vk , for j = 1 to k − 1
I put µjk ← 〈v∗j , vk〉/Vj and v∗k ← v∗k − µjkv

∗
j

Vk = 〈vk , vk〉
3. Execute RED(k , k − 1). If (δ − µ2

i−1i )Vk−1 > Vk execute SWAP(k)
and k ← max{2, k − 1}; else for = k − 2 down to 1 execute
RED(k, j) and k ← k + 1.

4. If k ≤ d go to step 2; else output basis {v1, v2, . . . , vd}.

I RED(k , j): If |µjk | ≤ 0.5 return; else q ← bµjke, vk ← vk − qvj ,
µjk ← µjk − q, for i = 1 to j − 1 put µik ← µik − qµij and return.

I SWAP(k): Swap vk and vk−1. If k > 2 for j = 1 to k − 2 swap µjk

and µjk−1 and update all variables to match (see p.88 in Cohen)

For a nice visualization see pages 61–66 of
http://thijs.com/docs/lec1.pdf.
(Animations only work in acroread.)
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