Coppersmith / Howgrave-Graham and LLL

Tanja Lange

Eindhoven University of Technology

22 September 2020

Let
$$g(x) = \sum_{i=0}^{d-1} g_i x^i \in \mathbf{Z}[x]$$
 of deg $(g) = d - 1$.
Let $m, b \in \mathbf{Z}_{>0}$

1.
$$g(x_0) \equiv 0 \mod b^m$$
 with $|x_0| \leq X$,

$$2. ||g(xX)|| \le b^m/\sqrt{d}$$

then $g(x_0) = 0$ over **Z**.

Here $||g(xX)|| = \sqrt{g_0^2 + g_1^2 X^2 + \dots + g_{d-1}^2 X^{2(d-1)}}$ is the Euclidean norm of the coefficient vector of g(xX).

Let
$$g(x) = \sum_{i=0}^{d-1} g_i x^i \in \mathbf{Z}[x]$$
 of deg $(g) = d - 1$.
Let $m, b \in \mathbf{Z}_{>0}$

1.
$$g(x_0) \equiv 0 \mod b^m$$
 with $|x_0| \leq X$,
2. $||g(xX)|| \leq b^m / \sqrt{d}$
then $g(x_0) = 0$ over \mathbb{Z} .
Here $||g(xX)|| = \sqrt{g_0^2 + g_1^2 X^2 + \dots + g_{d-1}^2 X^{2(d-1)}}$ is the Euclidean
norm of the coefficient vector of $g(xX)$.

If
$$x_0 \equiv 0 \mod b^m$$
 and $|x_0| < b^m$ then

Let
$$g(x) = \sum_{i=0}^{d-1} g_i x^i \in \mathbf{Z}[x]$$
 of deg $(g) = d - 1$.
Let $m, b \in \mathbf{Z}_{>0}$
If

1.
$$g(x_0) \equiv 0 \mod b^m$$
 with $|x_0| \leq X$,
2. $||g(xX)|| \leq b^m / \sqrt{d}$
then $g(x_0) = 0$ over **Z**.
Here $||g(xX)|| = \sqrt{g_0^2 + g_1^2 X^2 + \dots + g_{d-1}^2 X^{2(d-1)}}$ is the Euclidean
norm of the coefficient vector of $g(xX)$.

If
$$x_0 \equiv 0 \mod b^m$$
 and $|x_0| < b^m$ then $x_0 = 0$.

Let
$$g(x) = \sum_{i=0}^{d-1} g_i x^i \in \mathbf{Z}[x]$$
 of deg $(g) = d - 1$.
Let $m, b \in \mathbf{Z}_{>0}$
If

1.
$$g(x_0) \equiv 0 \mod b^m \text{ with } |x_0| \leq X$$
,

2. $||g(xX)|| \leq b^m/\sqrt{d}$

then $g(x_0) = 0$ over **Z**. Here $||g(xX)|| = \sqrt{g_0^2 + g_1^2 X^2 + \dots + g_{d-1}^2 X^{2(d-1)}}$ is the Euclidean norm of the coefficient vector of g(xX).

If $x_0 \in b^m \mathbf{Z}$ and $|x_0| < b^m$ then $x_0 = 0$.

Let
$$g(x) = \sum_{i=0}^{d-1} g_i x^i \in \mathbf{Z}[x]$$
 of deg $(g) = d - 1$.
Let $m, b \in \mathbf{Z}_{>0}$
If

1.
$$g(x_0) \equiv 0 \mod b^m$$
 with $|x_0| \leq X$,

2. $||g(xX)|| \leq b^m/\sqrt{d}$

then $g(x_0) = 0$ over **Z**. Here $||g(xX)|| = \sqrt{g_0^2 + g_1^2 X^2 + \dots + g_{d-1}^2 X^{2(d-1)}}$ is the Euclidean norm of the coefficient vector of g(xX).

If
$$x_0 \in b^m \mathbf{Z}$$
 and $|x_0| < b^m$ then $x_0 = 0$.
If $g(x_0) \in b^m \mathbf{Z}$ and $|g(x_0)| < b^m$ then $g(x_0) = 0$.

Let
$$g(x) = \sum_{i=0}^{d-1} g_i x^i \in \mathbf{Z}[x]$$
 of deg $(g) = d - 1$.
Let $m, b \in \mathbf{Z}_{>0}$ If

1.
$$g(x_0) \equiv 0 \mod b^m$$
 with $|x_0| \leq X$,

2. $||g(xX)|| \leq b^m/\sqrt{d}$

then $g(x_0) = 0$ over **Z**. Here $||g(xX)|| = \sqrt{g_0^2 + g_1^2 X^2 + \dots + g_{d-1}^2 X^{2(d-1)}}$ is the Euclidean norm of the coefficient vector of g(xX).

If
$$x_0 \in b^m \mathbb{Z}$$
 and $|x_0| < b^m$ then $x_0 = 0$.
If $g(x_0) \in b^m \mathbb{Z}$ and $|g(x_0)| < b^m$ then $g(x_0) = 0$.
Putting in bound on x_0 and expanding the absolute value
If $g(x_0) \in b^m \mathbb{Z}$, $|x_0| < X$, $|g_0| \le b^m/d$, $|g_1X| \le b^m/d$,
 $|g_2X^2| \le b^m/d$, ..., $|g_{d-1}X^{d-1}| \le b^m/d$ then $g(x_0) = 0$.

Let
$$g(x) = \sum_{i=0}^{d-1} g_i x^i \in \mathbf{Z}[x]$$
 of deg $(g) = d - 1$.
Let $m, b \in \mathbf{Z}_{>0}$ If

1.
$$g(x_0) \equiv 0 \mod b^m$$
 with $|x_0| \leq X$,

2. $||g(xX)|| \leq b^m/\sqrt{d}$

then $g(x_0) = 0$ over **Z**. Here $||g(xX)|| = \sqrt{g_0^2 + g_1^2 X^2 + \dots + g_{d-1}^2 X^{2(d-1)}}$ is the Euclidean norm of the coefficient vector of g(xX).

If
$$x_0 \in b^m \mathbb{Z}$$
 and $|x_0| < b^m$ then $x_0 = 0$.
If $g(x_0) \in b^m \mathbb{Z}$ and $|g(x_0)| < b^m$ then $g(x_0) = 0$.
Putting in bound on x_0 and expanding the absolute value.
If $g(x_0) \in b^m \mathbb{Z}$, $|x_0| < X$, $|g_0| \le b^m/d$, $|g_1 X| \le b^m/d$,
 $|g_2 X^2| \le b^m/d, \dots, |g_{d-1} X^{d-1}| \le b^m/d$ then $g(x_0) = 0$.

Now just square, sum up and take the squre root on both sides: $\sum_{i=0}^{d-1} g_i^2 X^{2i} \leq \sum_{i=0}^{d-1} b^{2m}/d^2 = b^{2m}/d.$

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^m \mathbf{Z}$.

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^m Z$. Here are some polynomials that work: $g(x) \in b^m Z + b^m x Z$

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^m \mathbb{Z}$. Here are some polynomials that work: $g(x) \in b^m \mathbb{Z} + b^m x^2 \mathbb{Z}$

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^m \mathbb{Z}$. Here are some polynomials that work: $g(x) \in b^m \mathbb{Z} + b^m x^2 \mathbb{Z} + b^m x^3 \mathbb{Z} \cdots$.

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^m \mathbb{Z}$. Here are some polynomials that work: $g(x) \in b^m \mathbb{Z} + b^m x^2 \mathbb{Z} + b^m x^3 \mathbb{Z} \cdots$.

We have some polynomial f(x) to start with and know that $f(x_0) \in b^m \mathbf{Z}$ for the x_0 we're looking for.

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^m \mathbb{Z}$. Here are some polynomials that work: $g(x) \in b^m \mathbb{Z} + b^m x^2 \mathbb{Z} + b^m x^3 \mathbb{Z} \cdots$.

We have some polynomial f(x) to start with and know that $f(x_0) \in b^m \mathbf{Z}$ for the x_0 we're looking for.

If deg(f) = t then we're looking for $g(x) \in b^m \mathbf{Z} + b^m x \mathbf{Z} + b^m x^2 \mathbf{Z} + \dots + b^m x^{t-1} \mathbf{Z} + f(x) \mathbf{Z}$. The polynomial f takes care of the b^m for x^t .

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^m \mathbb{Z}$. Here are some polynomials that work: $g(x) \in b^m \mathbb{Z} + b^m x^2 \mathbb{Z} + b^m x^3 \mathbb{Z} \cdots$.

We have some polynomial f(x) to start with and know that $f(x_0) \in b^m \mathbf{Z}$ for the x_0 we're looking for.

If deg(f) = t then we're looking for $g(x) \in b^m \mathbf{Z} + b^m x \mathbf{Z} + b^m x^2 \mathbf{Z} + \dots + b^m x^{t-1} \mathbf{Z} + f(x) \mathbf{Z}$. The polynomial f takes care of the b^m for x^t .

If that's too restrictive we can expand to $g(x) \in b^m \mathbf{Z} + b^m x^2 \mathbf{Z} + \dots + b^m x^{t-1} \mathbf{Z} + f(x) \mathbf{Z} + xf(x) \mathbf{Z} + x^2 f(x) \mathbf{Z} + \dots$

What to look for and how to find it?

All of these attacks start by finding sme polynomial deg(f) = t for which we a root modulo b^m is intersting. Let deg(f) = t and let $|x_0| \le X$ for some known X.

To find $g(x) \in$ $b^m \mathbf{Z} + b^m x \mathbf{Z} + b^m x^2 \mathbf{Z} + \dots + b^m x^{t-1} \mathbf{Z} + f(x) \mathbf{Z} + xf(x) \mathbf{Z} + x^2 f(x) \mathbf{Z} + \dots$ we will use LLL, which builds integer linear combinations of the input rows of a matrix. It returns a vector that is short in the Euclidean norm. (Hence we wanted that in the Howgrave-Graham theorem).

We set up a system of equations in the coefficient vectors, one row per option. $b^m \mathbf{Z}$ turns into coefficient b^m at the x^0 column etc.

For Howgrave-Graham we need to scale the column of x^s by X^s . So we get

$$\left(\begin{array}{cc} X & a \\ 0 & n \end{array}\right)$$

for knowing part of p.

What to look for and how to find it?

All of these attacks start by finding sme polynomial $\deg(f) = t$ for which we a root modulo b^m is intersting. Let $\deg(f) = t$ and let $|x_0| \le X$ for some known X.

To find $g(x) \in$ $b^m \mathbf{Z} + b^m x \mathbf{Z} + b^m x^2 \mathbf{Z} + \dots + b^m x^{t-1} \mathbf{Z} + f(x) \mathbf{Z} + xf(x) \mathbf{Z} + x^2 f(x) \mathbf{Z} + \dots$ we will use LLL, which builds integer linear combinations of the input rows of a matrix. It returns a vector that is short in the Euclidean norm. (Hence we wanted that in the Howgrave-Graham theorem).

We set up a system of equations in the coefficient vectors, one row per option. $b^m \mathbf{Z}$ turns into coefficient b^m at the x^0 column etc.

For Howgrave-Graham we need to scale the column of x^s by X^s . So we get

$$\left(\begin{array}{ccc}
X^2 & aX & 0\\
0 & X & a\\
0 & 0 & n
\end{array}\right)$$

for knowing part of p.

Tanja Lange

What to look for and how to find it?

All of these attacks start by finding sme polynomial $\deg(f) = t$ for which we a root modulo b^m is intersting. Let $\deg(f) = t$ and let $|x_0| \le X$ for some known X.

To find $g(x) \in$ $b^m \mathbf{Z} + b^m x \mathbf{Z} + b^m x^2 \mathbf{Z} + \dots + b^m x^{t-1} \mathbf{Z} + f(x) \mathbf{Z} + xf(x) \mathbf{Z} + x^2 f(x) \mathbf{Z} + \dots$ we will use LLL, which builds integer linear combinations of the input rows of a matrix. It returns a vector that is short in the Euclidean norm. (Hence we wanted that in the Howgrave-Graham theorem).

We set up a system of equations in the coefficient vectors, one row per option. $b^m \mathbf{Z}$ turns into coefficient b^m at the x^0 column etc.

For Howgrave-Graham we need to scale the column of x^s by X^s . So we get

$$\left(\begin{array}{ccc} X^2 & aX & 0\\ 0 & X & a\\ 0 & 0 & n \end{array}\right) \stackrel{?}{=} \left(\begin{array}{ccc} X^2 & 2aX & a^2\\ 0 & X & a\\ 0 & 0 & n \end{array}\right)$$

for knowing part of p.

Tanja Lange

LLL

Due to Lenstra, Lensra, and Lovász, 1982.

• On input a set of vectors $\{v_1, v_2, \ldots, v_d\}$ output a short vector v'_1 so that $v'_1 = \sum a_i v_i$ for some $a_i \in \mathbf{Z}$.

LLL

Due to Lenstra, Lensra, and Lovász, 1982.

- ▶ On input a set of vectors $\{v_1, v_2, ..., v_d\}$ output a short vector v'_1 so that $v'_1 = \sum a_i v_i$ for some $a_i \in \mathbf{Z}$.
- LLL outputs d vectors which are shorter and more orthogonal.
 Each vector is an integer linear combinantion of the inputs.
- ▶ LLL uses many elements from Gram-Schmidt orthogonalization:

• for
$$i = 1$$
 to $j - 1$

$$\blacktriangleright \qquad \mu_{ij} = \frac{\langle \mathbf{v}_i^*, \mathbf{v}_j \rangle}{\langle \mathbf{v}_i^*, \mathbf{v}_i^* \rangle}$$

•
$$v_j^* = v_j - \sum_{i=1}^{j-1} \mu_{ij} v_i^*$$

- ▶ Note that the μ_{ij} are not integers, so the v_j^* are not in the lattice.
- \blacktriangleright A lattice basis is LLL reduced for parameter 0.25 $< \delta < 1$ if
 - $|\mu_{ij}| \le 0.5$ for all $1 \le j < i \le d$,
 - $(\delta \mu_{i-1i}^2) ||\mathbf{v}_{i-1}^*||^2 \le ||\mathbf{v}_i^*||^2.$
- ► This guarantees $||v_1|| \le (2/\sqrt{4\delta-1})^{(d-1)/2} \det(L)^{1/d}$, where det(L) is the determinant of the lattice.

LLL algorithm (from Cohen, GTM 138, transposed)

Input: Basis $\{v_1, v_2, \dots, v_d\}$ of lattice *L*, $0.25 < \delta < 1$ Output: LLL reduced basis for *L* with parameter δ

1.
$$k \leftarrow 2$$
, $k_{\max} \leftarrow 1$, $v_1^* \leftarrow v_1$, $V_1 = \langle v_1, v_1 \rangle$

2. if
$$k \leq k_{\max}$$
 go to step 3
else $k_{\max} \leftarrow k$, $v_k^* \leftarrow v_k$, for $j = 1$ to $k - 1$
 \blacktriangleright put $\mu_{jk} \leftarrow \langle v_j^*, v_k \rangle / V_j$ and $v_k^* \leftarrow v_k^* - \mu_{jk} v_j^*$
 $V_k = \langle v_k, v_k \rangle$

3. Execute RED(k, k - 1). If $(\delta - \mu_{i-1i}^2)V_{k-1} > V_k$ execute SWAP(k) and $k \leftarrow \max\{2, k - 1\}$; else for = k - 2 down to 1 execute RED(k, j) and $k \leftarrow k + 1$.

4. If $k \leq d$ go to step 2; else output basis $\{v_1, v_2, \ldots, v_d\}$.

- ▶ RED(k, j): If $|\mu_{jk}| \le 0.5$ return; else $q \leftarrow \lfloor \mu_{jk} \rfloor$, $v_k \leftarrow v_k qv_j$, $\mu_{jk} \leftarrow \mu_{jk} - q$, for i = 1 to j - 1 put $\mu_{ik} \leftarrow \mu_{ik} - q\mu_{ij}$ and return.
- SWAP(k): Swap v_k and v_{k-1}. If k > 2 for j = 1 to k − 2 swap µ_{jk} and µ_{jk-1} and update all variables to match (see p.88 in Cohen)

For a nice visualization see pages 61-66 of http://thijs.com/docs/lec1.pdf. (Animations only work in acroread.)

Tanja Lange

Dixon's method of random squares