
Exponentiation

Tanja Lange

Eindhoven University of Technology

10 September 2020



Right–to–Left Binary

IN: Non-zero positive integers a, b, n, with b = (b`−1 . . . b0)2.
OUT: c ≡ ab mod n.

1. c ← 1, t ← a,

2. for i = 0 to `− 1 do

2.1 if bi = 1 then c ← c · t mod n
2.2 t ← t2 mod n

3. return c

Example
42 = (101010)2 = 25 + 23 + 21, so ` = 6 is minimal
We see the following intermediate states of (c , t):
(1, a) initialization
(1, a2) no 20 contribution
(a2, a4) has 21

(a2, a8) no 22 contribution
(a10, a16) has 23

(a10, a32) no 24 contribution
(a42, a64) has 25 We could have skipped computing a64.

Tanja Lange Exponentiation 2



Left–to–Right Binary

IN: Non-zero positive integers a, b, n, with b = (b`−1 . . . b0)2.
OUT: c ≡ ab mod n.

1. c ← 1

2. for i = `− 1 to 0 do

2.1 c ← c2 mod n
2.2 if bi = 1 then c ← c · a mod n

3. return c

Example
42 = (101010)2 = 25 + 23 + 21, so ` = 6 is minimal
We see the following intermediate states of c :
1 initialization
a has 25

a2 no 24 contribution
a5 has 23

a10 no 22 contribution
a21 has 21

a42 no 20 contribution
Only 1 variable to update. Same number of squarings and multiplications.

Tanja Lange Exponentiation 3



Windowing methods

Windowing methods use precomputed powers of a, so this does not work
with the data flow as in the first method – we would need to square all
precomputed values at each step, which is much more work than what we
save in the multiplications.

The exponentiation thus uses the left-to-right method.

IN: a, b, n ∈ Z>0, with b =
∑`−1

i=0 bi2
i with bi ∈ {0, 1, 2, . . . , 2w − 1}.

OUT: c ≡ ab mod n.

1. for i = 0 to 2w − 1 do

1.1 A[i ] = ai mod n // this takes 1 mult. as A[i ] = a · A[i − 1].

2. c ← 1

3. for i = `− 1 to 0 do

3.1 c ← c2 mod n
3.2 if bi 6= 0 then c ← c · A[bi ] mod n

4. return c

Tanja Lange Exponentiation 4



Windowing methods

Windowing methods use precomputed powers of a, so this does not work
with the data flow as in the first method – we would need to square all
precomputed values at each step, which is much more work than what we
save in the multiplications.

The exponentiation thus uses the left-to-right method.

To compute the coefficients it is easiest to process the bits of the
exponent b starting from the least-significant bit.

Example
42 = (101010)2

Tanja Lange Exponentiation 4



Windowing methods (fixed)
Windowing methods use precomputed powers of a, so this does not work
with the data flow as in the first method – we would need to square all
precomputed values at each step, which is much more work than what we
save in the multiplications.

The exponentiation thus uses the left-to-right method.

To compute the coefficients it is easiest to process the bits of the
exponent b starting from the least-significant bit.

Example
42 = (10 10 10)2 = (020202) = 2 · 24 + 2 · 22 + 2 · 20 for window width
w = 2.
So we precompute A = [a3, a2, a, 1] (only need a2 in this example).
We see the following intermediate states of c , ` = 5:
1 initialization
a2 has 2 · 24

a4 step after multiplication is only a squaring
a10 has 2 · 22

a20 step after multiplication is only a squaring
a42 has 2 · 20

Tanja Lange Exponentiation 4



Windowing methods (fixed)
Windowing methods use precomputed powers of a, so this does not work
with the data flow as in the first method – we would need to square all
precomputed values at each step, which is much more work than what we
save in the multiplications.

The exponentiation thus uses the left-to-right method.

To compute the coefficients it is easiest to process the bits of the
exponent b starting from the least-significant bit.

Example
42 = (101 010)2 = (005002) = 5 · 23 + 2 · 20 for window width w = 3.
So we precompute A = [a7, a6, a5, a4, a3, a2, a, 1] (only need a5 and a2 in
this example).
We see the following intermediate states of c , ` = 4:
1 initialization
a5 has 5 · 23

a10 1. step after multiplication is only a squaring
a20 2. step after multiplication is only a squaring
a42 has 2 · 20

Tanja Lange Exponentiation 4



Windowing methods (sliding)
Windowing methods use precomputed powers of a, so this does not work
with the data flow as in the first method – we would need to square all
precomputed values at each step, which is much more work than what we
save in the multiplications.

The exponentiation thus uses the left-to-right method.

To compute the coefficients it is easiest to process the bits of the
exponent b starting from the least-significant bit.

Example
42 = (1 00 101 0)2 = (100050) = 25 + 5 · 2 for sliding window w = 3.
So we precompute A = [a7, a6, a5, a4, a3, a2, a, 1]
We see the following intermediate states of c , ` = 6:
1 initialization
a has 1 · 25

a2 1. step after multiplication is only a squaring
a4 2. step after multiplication is only a squaring
a8 bonus squaring
a21 has 5 · 2
a42 1. step after multiplication is only a squaring
Tanja Lange Exponentiation 4



Timings of using windowing method
Watch for side channels using timing. Do not use if/else but a pattern
of steps independent of secrets, e.g. fixed windows with w squarings
followed by a multiplication: multiply by 1 if the coefficient is 0.

This plot is from an attack paper (TPM-Fail) where the attack used that
for some exponents the first bits are all 0, which is visible in the overall
speed, if the number of loops in the exponentiation method varies with
the exponent.
Tanja Lange Exponentiation 5

https://tpm.fail

