TECHNISCHE UNIVERSITEIT EINDHOVEN

Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 29 October 2019

Name :

TU/e student number :

Exercise	1	2	3	4	5	6	total
points							

Notes: Please hand in *this sheet* at the end of the exam. You may keep the sheet with the exercises.

This exam consists of 6 exercises. You have from 13:30 - 16:30 to solve them. You can reach 100 points.

Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.

All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.

Do not write in red or with a pencil.

You are allowed to use any books and notes, e.g. your homework. You are not allowed to use the textbooks of your colleagues.

You are allowed to use a calculator without networking abilities. Usage of personal laptops and cell phones is forbidden. You can use the laptops provided in the exam room.

- 1. This problem is about the Diffie-Hellman key exchange. The system uses the multiplicative group \mathbb{F}_p^* modulo the prime p=25801. The element $g=7\in\mathbb{F}_{25801}^*$ has order 25800 and is thus a generator of the full multiplicative group.
 - (a) Alice chooses a=314 as her secret key. Compute Alice's public key h_A .
 - (b) Alice receives $h_B = g^b = 11245$ from Bob as his Diffie-Hellman keyshare.

 Compute the key shared between Alice and Bob, using Alice's secret key a from the first part of this exercise.
- 2. This problem is about RSA encryption.
 - (a) Alice chooses p=521 and q=331. Compute Alice's public key (n,e), using e=7, and the matching private key d. 2 points
 - (b) Bob uses public key (n, e) = (396553, 17) and secret key d = 302273. He receives ciphertext c = 234040.

 Decrypt the ciphertext. Verify your answer by re-encrypting the message.
 - (c) Decrypt the same message as under b) but this time using RSA with CRT for p = 733 and q = 541. Make sure to document your computation, i.e., state the values for c_p, d_p, \ldots 5 points
- 3. This exercise is about computing discrete logarithms in the multiplicative group of \mathbb{F}_p for p=25801. The element g=7 has order p-1=25800. The factorization of p-1 is $p-1=2^3\cdot 3\cdot 5^2\cdot 43$. Use the Pohlig-Hellman attack to compute the discrete logarithm b of Bob's key $h_B=g^b=11245$, i.e. perform the following steps.
 - (a) Compute b modulo 2^3 by first computing b modulo 2, then modulo 2^2 and finally modulo 2^3 .

 Verify your answer.
 - (b) Compute b modulo 3. 2 points
 - (c) Compute b modulo 5² by first computing b modulo 5 and then modulo 5² using the same table of powers of g.
 Verify your answer.
 6 points

(d) Compute b modulo 43 using the Pollard-rho method in the school-book version, on $G = g^{(p-1)/43}$ and $H = h^{(p-1)/43}$, starting with $t_0 = G$, $a_0 = 1$, and $b_0 = 0$.

$$t_{i+1} = \left\{ \begin{array}{l} t_i \cdot G \\ t_i \cdot H \\ t_i^2 \end{array} \right., a_{i+1} = \left\{ \begin{array}{l} a_i + 1 \\ a_i \\ 2a_i \end{array} \right., b_{i+1} = \left\{ \begin{array}{l} b_i \\ b_i + 1 \\ 2b_i \end{array} \right. \text{ for } t_i \equiv \left\{ \begin{array}{l} 0 \bmod 3 \\ 1 \bmod 3 \\ 2 \bmod 3 \end{array} \right.,$$

where to select the step one takes t_i as an integer in [0, p-1]. The twice as fast walk has $r_i = t_{2i}$.

Verify your answer.

10 points

(e) Combine the results above to compute b. Verify your answer.

4 points

- 4. This exercise is about factoring.
 - (a) Use the p-1 method to factor n=396553 with basis a=8 and exponent $s=\text{lcm}\{1,2,3,4,5,6,7,8,9,10,11,12\}$. Make sure to state the value for s and the result of the exponentiation modulo n. Determine both factors of n.
 - (b) The factorization of 540 is $540 = 2^2 \cdot 3^3 \cdot 5$ and that of 732 is $732 = 2^2 \cdot 3 \cdot 61$. Explain why the factorization in (a) was successful. **Hint:** Check whether a = 2 would have worked.

4 points

(c) Use Pollard's rho method for factorization to find a factor of 473 with iteration function $x_{i+1} = x_i^2 + 7$ and Floyd's cycle finding method, i.e. after each increment in i compute $\gcd(x_{2i} - x_i, 473)$ until a non-trivial gcd is found. Start with $x_0 = 5$.

5 points

5. (a) Find all affine points, i.e. points of the form (x, y), on the Edwards curve

$$E: x^2 + y^2 = 1 + 3x^2y^2$$

over \mathbb{F}_{19} .

9 points

(b) Verify that P = (5, 8) is on the curve. Compute the order of P.

Hint: You may use information learned about the order of points on Edwards curves.

(c) Translate the curve and P to Montgomery form

$$Bv^2 = u^3 + Au^2 + u,$$

i.e. compute A, B and the resulting point P'. Verify that the resulting point P' is on the Montgomery curve.

5 points

6. Consider the curve $C: y^2 = x^3$ over \mathbb{F}_p with p = 1009. On the set of points of $C(\mathbb{F}_p) \setminus \{(0,0)\}$ one can define the same addition law as on an elliptic curve in short Weierstrass form, i.e. use $(x,y) + (x,-y) = \infty$, and otherwise for $P_1 = (x_1,y_1), P_2 = (x_2,y_2)$

$$P_1 + P_2 = (x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_1 - x_3) - y_1),$$

where

$$\lambda = \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} & P_1 \neq \pm P_2\\ \frac{3x_1^2}{2y_1} & P_1 = P_2 \neq -P_2 \end{cases}$$

Note that all computations take place in \mathbb{F}_p .

- (a) Show that C is not an elliptic curve over \mathbb{F}_p . 2 points
- (b) Let $P = (x_1, y_1) = (9,982)$. Compute $2P = (x_2, y_2)$ and $3P = (x_3, y_3)$.
- (c) For the results from (b), verify that 2P and 3P satisfy the curve equation for C and compute $x_1/y_1, x_2/y_2$, and x_3/y_3 . 5 points
- (d) Solve the discrete logarithm problem for Q = (897,710) with base P = (9,982), i.e., find a natural number k so that Q = kP holds. Verify your answer, i.e., compute kP.

Hint: This needs information from (c).

9 points