Cryptography, homework sheet 2
Due for 2MMC10: 19 September 2019, 10:45
and for Mastermath: 03 Ocotber 2019, 10:45 by email to crypto.course@tue.nl

Team up in groups of two or three to hand in your homework. We do not have capacity to
correct all homeworks individually. Do not email Tanja your homework or put homework in
mailboxes.

You may use computer algebra systems such as mathematica, gp, or sage or program in C,
Java, or Python. Please submit your code if any) as part of your homework. If you do,
make sure that your programs compile and run correctly; my students will not debug your
programs. The program should also be humanly readable.

1. Perform one round of the Miller-Rabin test with base
a = 2 to test whether 31 is prime.
What is the answer of the Miller-Rabin test?

2. The the Pocklington test to prove that 157 is prime. You may use that 13 is prime.

3. Use Pollard’s rho method for factorization to find a factor of 27887. Use starting
point zg = 17, iteration function x;11 = z7 + 1 and Floyd’s cycle finding method, i.e.
compute ged(zg; — x4, 27887) until a non-trivial ged is found. Make sure to document
the intermediate steps in a table as shown in the lecture, i.e., do the gcd computations
after each step.

4. Use the p — 1 method to factor 27887 with basis a = 2 and exponent s =
lem{1,2,3,4,5,...,11}.

5. Use Dixon’s factorization method to factor
the number n = 403 using a; = 22.
Note: This lists all the bases you need.

Just because some people might not have seen XGCD as an algorithm, here is a description of
XGCD. This description assumes that the input elements f, g live in some ring R in which the
greatest common divisor is defined. We will usually use the XGCD on integers or polynomials.
If the inputs are integers you can ignore the part the leading coefficient.

Algorithm 1 (Extended Euclidean algorithm)
IN: f,ge R
OUT: d,u,v € R withd =uf + vg

1. a+[f,1,0]
2. b+ [g,0,1]
3. repeat

(a) ¢+ a — (a[l]div b[1])b
(b) a<+b
(c) b+ c

while b[1] #0
4. 1+ LC(a[l]), a < a/l /*LC = leading coefficient, this only applies to polynomials*/
5. d < a[l], u <+ al2], v < a[3]

6. return d,u,v

In this algorithm, div denotes division with remainder. The first component of ¢ is thus easier
written as c[1] <= a[l] mod b[1] but by operating on the whole vector we get to update the
values leading to uw and v, too. At each step we have

a[l] = a[2]f + a[3]g and b[1] = b[2]f + b[3]g.

To see this, note that this holds trivially for the initial conditions. If it holds for both a and b
then also for ¢ since it computes a linear relation of both vectors. So each update maintains
the relation and eventually when b[1] = 0, we have that a[l] holds the previous remainder,
which is the ged of f and g. If the inputs are polynomials, at the end the ged is made monic
by dividing by the leading coefficient LC(a[1]).

Example 2 Let R = R[z] and f(z) = 2%+ 323 — 22 — 4z + 1, g(z) = 2* — 823 +82% + 82z — 9.
So at first we have a = [f,1,0],b = [g,0,1].

We have (a[l]div b[1]) = x + 8 and so end the first round with

a = [g,0,1],
[592°% — 732% — 592 + 73,1, —x — 8.

Indeed b[1] = f(z) + (—z — 8)g(x).

With these new values we have (a[l]div b[1]) = 1/59z — 399/3481 and so the second round
ends with

= [592% — 7322 — 592 + 73,1, —z — 8],
b = [2202/3481z% — 2202/3481, —1/59x + 399/3481,1/59x2 + 73/3481x + 289/3481].

In the third round we have (a[l] div b[1]) = 205379/2202x — 254113/2202 and obtain

— [2202/348122 — 2202/3481, —1/59z + 399/3481,1/5922 + 73 /3481 + 289/3481],
b = [0,3481/22022% — 13924/1101x + 10443/734, —3481/22022 — 6962/1101x 4 3481/2202].

Since b[1] = 0 the loop terminates. We have LC(a[l]) = 2202/3481 and thus normalize to
a = [z —1,-59/2202z + 133/734,59/220222 + 73/2202z + 289/2202].
We check that indeed

22 — 1= (-59/2202z + 133/734)(z° + 323 — 2% — 4z + 1)+
(59/2202x2 4 73/2202z + 289/2202)(z* — 822 + 822 + 8z — 9).

