
Cryptographic Hash
Functions

Part II

Andreas Hülsing, TU/e

2MMC10 Cryptology

Hash function design

• Create fixed input size building block

• Use building block to build compression function

• Use “mode“ for length extension

2

Permutation /
Block cipher

Compression
function

Hash function

Reductionist proofs

Generic transformsEngineering

Cryptanalysis /
best practices

(Length-Extension) Modes

3

4

Merkle-Damgård construction

Given:

• compression function: 𝐶𝐹 ∶ 0,1 𝑛 × {0,1}𝑟 → {0,1}𝑛

Goal:

• Hash function: ℎ: 0,1 ∗ → {0,1}𝑛

5

Merkle-Damgård - iterated
compression

6

Merkle-Damgård construction

• Assume that message m can be split up into blocks m1, …, ms of equal block
length r

• most popular block length is r = 512

• compression function: 𝐶𝐹 ∶ 0,1 𝑛 × {0,1}𝑟 → {0,1}𝑛

• intermediate hash values (length n) as CF input and output

• message blocks as second input of CF

• start with fixed initial IHV0 (a.k.a. IV = initialization vector)

• iterate CF : IHV1 = CF(IHV0,m1), IHV2 = CF(IHV1,m2), …, IHVs = CF(IHVs-1,ms),

• take h(m) = IHVs as hash value

• advantages:
• this design makes streaming possible

• hash function analysis becomes compression function analysis

• analysis easier because domain of CF is finite

7

padding

• padding: add dummy bits to satisfy block length
requirement

• non-ambiguous padding: add one 1-bit and as
many 0-bits as necessary to fill the final block
• when original message length is a multiple of the block

length, apply padding anyway, adding an extra dummy
block

• any other non-ambiguous padding will work as well

8

Merkle-Damgård strengthening

• let padding leave final 64 bits open

• encode in those 64 bits the original message length
• that’s why messages of length ≥ 264 are not supported

• reasons:
• needed in the proof of the Merkle-Damgård theorem
• prevents some attacks such as

• trivial collisions for random IV

• now h(IHV0,m1||m2) = h(IHV1,m2)

• see next slide for more

9

Merkle-Damgård strengthening,
cont’d

• fixpoint attack

fixpoint: IHV, m such that CF(IHV,m) = IHV

• long message attack

10

compression function collisions
• collision for a compression function: m1, m2, IHV such that CF(IHV,m1) =

CF(IHV,m2)

• pseudo-collision for a compression function: m1, m2, IHV1, IHV2 such that
CF(IHV1,m1) = CF(IHV2,m2)

• Theorem (Merkle-Damgård): If the compression function CF is pseudo-
collision resistant, then a hash function h derived by Merkle-Damgård
iterated compression is collision resistant.

• Proof: Suppose 𝒉 𝒎𝟏 = 𝒉(𝒎𝟐), then

• If 𝒎𝟏, 𝒎𝟐 same size: locate the iteration where pseudo-collision occurs

• Else a pseudo-collision for CF appears in the last blocks (cont. length)

• Note:
• a method to find pseudo-collisions does not lead to a method to find collisions for the hash

function

• a method to find collisions for the compression function is almost a method to find
collisions for the hash function, we ‘only’ have a wrong IHV

Sponges

Given:

• permutation: 𝑓 ∶ {0,1}𝑏 → {0,1}𝑏

Goal:

• Hash function: ℎ: 0,1 ∗ → {0,1}𝑛

(actually ℎ: 0,1 ∗ → 0,1 ∗)

• (Already includes CF design, more later)

11

12

Sponges

• Used and introduced in SHA3 aka Keccak
• Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche

Intermezzo: Random oracles

• Models the perfect hash function

• Truely random function without any structure

• Best attacks: Generic attacks (No structure available!)

Issue:

• No way to build a RO with polynomial-size description

Mind Model:

• Lazy-sampling
• Imagine a black box implementing the function
• For every new query, a random response is sampled
• For old queries, former response is used

13

14

Sponge security

• Theorem (Indifferentiability from a random oracle):
If f is a random permutation, the expected complexity for differentiating a
sponge from a random oracle is 𝝅 𝟐𝒄/𝟐.

• Note:
• Neat way to simplify security arguments

• Implies bounds for all attacks that use less than 𝝅 𝟐𝒄/𝟐 queries

• Bounds are those of generic attacks against a random oracle

15

Sponges

• Used and introduced in SHA3 aka Keccak
• Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche

Compression Function
Design

16

Block-Cipher-based designs

• Traditional approach

• Many possible modes
• see Preneel, Govaerts, Vandewalle. Hash functions based on block

ciphers: a synthetic approach. CRYPTO’93

• security: Black, Rogaway, Shrimpton. Black-Box Analysis of the
Block-Cipher-Based Hash-Function Constructions from PGV.
CRYPTO’02

• Most popular: Matyas-Meyer-Oseas

17

IHVi

Mi

IHVi+1

Permutation-based designs

• Less frequent use

• Keccak compression function:

• Important: NEVER hand out last c bits of IHV!

18

r

c

IHVi IHVi+1

Mi

Common security assessment

• Provable security analyzed in idealized models:
• „Black-box models“ (e.g. ideal cipher, random oracle, or

random permutation model)

• Proofs assuming underlying building block behaves
like such an idealized building block

• Building blocks then get cryptanalyzed, searching
for “non-random behavior”

19

20

Provable hash functions

• people don’t like that one can’t prove much about
hash functions

• reduction to established ‘hard problem’ such as
factoring is seen as an advantage

• Example: VSH – Very Smooth Hash
• Contini-Lenstra-Steinfeld 2006

• collision resistance provable under assumption that a
problem directly related to factoring is hard

• but still far from ideal
• bad performance compared to SHA-256

• all kinds of multiplicative relations between hash values exist

21

22

Hash-based signatures

9/19/2019 https://huelsing.net 23

Lamport-Diffie OTS [Lam79]

Message M = b1,…,bm, OWF H = n bit

SK

PK

Sig

19-9-2019 PAGE 24

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H H

sk1,b1 skm,bm

*

Muxb1 Muxb2 Muxbm

EU-CMA for OTS

𝑝𝑘, 1𝑛

SIGN

𝑠𝑘

𝑀

(𝜎,𝑀)

(𝜎∗, 𝑀∗) Success if 𝑀∗ ≠ 𝑀 and
Verify 𝑝𝑘, 𝜎∗, 𝑀∗ = Accept

23.09.2013 | TU Darmstadt | Andreas Hülsing | 25

Security

Theorem:

If H is one-way then LD-OTS is one-time eu-cma-
secure.

Reduction
Input: 𝑦𝑐 , 𝑘

Set 𝐻 ← ℎ𝑘
Replace random pki,b

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H H

𝑦𝑐

Reduction
Input: 𝑦𝑐 , 𝑘

Set 𝐻 ← ℎ𝑘
Replace random pki,b

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H

sk1,b1 skm,bm

Muxb1 Muxb2 Muxbm

𝑦𝑐

Adv. Message: M = b1,…,bm
If bi = b return fail
else return Sign(M)

?

Reduction
Input: 𝑦𝑐 , 𝑘

Set 𝐻 ← ℎ𝑘
Choose random pki,b

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H

𝑦𝑐

Forgery: M* = b1*,…,bm*,
𝜎 = 𝜎1, … , 𝜎𝑚

If bi ≠ b return fail
Else return 𝜎𝑖∗

? 𝜎𝑖∗𝜎𝑖∗

Reduction - Analysis

Abort in two cases:

1. bi = b
probability ½ : b is a random bit

2. bi ≠ b

probability 1 - 1/m: At least one bit has to flip as
M* ≠ M

Reduction succeeds with A‘s success probability
times 1/2m.

Merkle’s Hash-based Signatures

19-9-2019 PAGE 31

OTS

OTS OTS OTS OTS OTS OTS OTS

HH H H H H H H

H H H H

H H

H

PK

SIG = (i=2, , , , ,)

OTS

SK

Security

Theorem:

MSS is eu-cma-secure if OTS is a one-time eu-cma
secure signature scheme and H is a random element
from a family of collision resistant hash functions.

Questions?

33

Basic Building Blocks

34

35

the MD4 family of hash functions

MD4

(Rivest 1990)

RIPEMD

(RIPE 1992)

RIPEMD-128

RIPEMD-160

RIPEMD-256

RIPEMD-320

(Dobbertin, Bosselaers,

Preneel 1992)

MD5

(Rivest 1992)

HAVAL

(Zheng, Pieprzyk,

Seberry 1993)

SHA-0

(NIST 1993)

SHA-1

(NIST 1995)

SHA-224

SHA-256

SHA-384

SHA-512

(NIST 2004)

36

design of MD4 family compression
functions

message block
split into words

message expansion
input words for
each step

IHV initial state
each step updates

state with an input
word

final state ‘added’
to IHV

(feed-forward)

37

design details
• MD4, MD5, SHA-0, SHA-1 details:

• 512-bit message block split into 16 32-bit words
• state consists of 4 (MD4, MD5) or 5 (SHA-0, SHA-1) 32-bit

words
• MD4: 3 rounds of 16 steps each, so 48 steps, 48 input words
• MD5: 4 rounds of 16 steps each, so 64 steps, 64 input words
• SHA-0, SHA-1: 4 rounds of 20 steps each, so 80 steps, 80 input

words
• message expansion and step operations use only very easy to

implement operations:
• bitwise Boolean operations
• bit shifts and bit rotations
• addition modulo 232

• proper mixing believed to be cryptographically strong

38

message expansion

• MD4, MD5 use roundwise permutation, for MD5:
• W0 = M0, W1 = M1, …, W15 = M15,
• W16 = M1, W17 = M6, …, W31 = M12, (jump 5 mod 16)
• W32 = M5, W33 = M8, …, W47 = M2, (jump 3 mod 16)
• W48 = M0, W49 = M7, …, W63 = M9 (jump 7 mod 16)

• SHA-0, SHA-1 use recursivity
• W0 = M0, W1 = M1, …, W15 = M15,
• SHA-0: Wi = Wi-3 XOR Wi-8 XOR Wi-14 XOR Wi-16 for i = 16, …, 79
• problem: kth bit influenced only by kth bits of preceding

words, so not much diffusion
• SHA-1: Wi = (Wi-3 XOR Wi-8 XOR Wi-14 XOR Wi-16)<<<1

(additional rotation by 1 bit,
this is the only difference between SHA-0 and SHA-1)

39

Example: step operations in MD5
• in each step only one state word is updated

• the other state words are rotated by 1

• state update:

A’ = B + ((A + fi(B,C,D) + Wi + Ki) <<< si)

Ki, si step dependent constants,

+ is addition mod 232,

fi round dependend boolean functions:

fi(x,y,z) = xy OR (¬x)z for i = 1, …, 16,

fi(x,y,z) = xz OR y(¬z) for i = 17, …, 32,

fi(x,y,z) = x XOR y XOR z for i = 33, …, 48,

fi(x,y,z) = y XOR (y OR (¬z)) for i = 49, …, 64,

these functions are nonlinear, balanced, and

have an avalanche effect

Step operations in MD5

40

