Cryptographic Hash
Functions
Part ||

2MMC10 Cryptology

Andreas Hilsing, TU/e

Hash function design

 Create fixed input size building block
* Use building block to build compression function
* Use “mode” for length extension

Engineering Generic transforms

Permutation /

Compression

. Hash function
function

Block cipher

Cryptanalysis /

best practices Reductionist proofs

(Length-Extension) Modes

Merkle-Damgard construction

Given:
« compression function: CF : {0,1}* X {0,1}" - {0,1}"

Goal:
* Hash function: h: {0,1}* - {0,1}"

Merkle-Damgard - iterated
compression
data: block 1 block 2 block 3 | «---e-- block n
IHV IHV IHV
compress compress compress

COmpreS%/ -------

T

IHV = hash

Merkle-Damgard construction

Assume that message m can be split up into blocks m,, ..., m. of equal block
length r

* most popular block length is r=512
. CF : {0,1}*x {0,1} — {0,1}"
(length n) as CF input and output
as second input of CF
start with fixed initial IHV, (a.k.a. IV = initialization vector)
iterate CF : IHV, = CF(IHV,,,m,), IHV, = CF(IHV;,m,), ..., IHV, = CF(IHV_;,m,),
take h(m) = IHV, as hash value

advantages:
* this design makes streaming possible
* hash function analysis becomes compression function analysis
e analysis easier because domain of CF is finite

padding

: add dummy bits to satisfy block length
requirement

* non-ambiguous padding: add one 1-bit and as
many O-bits as necessary to fill the final block

* when original message length is a multiple of the block
length, apply padding anyway, adding an extra dummy
block

e any other non-ambiguous padding will work as well

Merkle-Damgard strengthening

* et padding leave final 64 bits open

* encode in those 64 bits the original message length
* that’s why messages of length > 2°* are not supported

® reasons:
* needed in the proof of the Merkle-Damgard theorem

* prevents some attacks such as
* trivial collisions for random /V/

m mo
IHV, IHV4 IHV,

* now h(IHV,,m,||m,) = h(IHV,,m,)
e see next slide for more

Merkle-Damgard strengthening,

cont’d

* fixpoint attack

fixpoint: /IHV, m such that CF(/HV,m) = IHV

m4 mo
IHV, - - IHV, IHV;
v, My, M M
* long message attack
IHV

IHVy IHVi4 —— IHV;

second preimage

compression function collisions

for a compression function: m,, m,, IHV such that CF(/HV,m,) =
CF(IHV,m.,)

for a compression function: m,, m,, IHV,, IHV, such that
CF(IHV,,m,) = CF(IHV,,m.,)

(Merkle-Damgard): If the compression function CF is pseudo-
collision resistant, then a hash function h derived by Merkle-Damgard
iterated compression is collision resistant.

* Proof: Suppose h(m4) = h(m,), then
* If m4, m, same size: locate the iteration where pseudo-collision occurs
* Else a pseudo-collision for CF appears in the last blocks (cont. length)

Note:

* amethod to find pseudo-collisions does not lead to a method to find collisions for the hash
function

* amethod to find collisions for the compression function is almost a method to find
collisions for the hash function, we ‘only’ have a wrong /HV

10

Sponges

:f+ {01} - {0,1}”

h: {0,1}* - {0,1}"
(actually h: {0,1}* - {0,1}*)

* (Already includes CF design, more later)

Sponges

 Used and introduced in SHA3 aka Keccak

* Guido Bertoni, Joan Daemen, Michaél Peeters and Gilles Van Assche

M

| pad }

A) a N)

-
Ty

W L ./ o/ 'k_./': - N

absorbing : squeezing

sponge

12

cl 10 - - —a — H s —»

Intermezzo: Random oracles

* Models the perfect hash function
* Truely random function without any structure
e Best attacks: Generic attacks (No structure available!)

Issue:
* No way to build a RO with polynomial-size description

Mind Model:

* Lazy-sampling
* Imagine a black box implementing the function
* For every new query, a random response is sampled
* For old queries, former response is used

Sponge security

(Indifferentiability from a random oracle):
If f is a random permutation, the expected complexity for differentiating a

sponge from a random oracle is /7T 2¢/2.

* Note:
* Neat way to simplify security arguments

* Implies bounds for all attacks that use less than /7 2¢/2 queries
* Bounds are those of generic attacks against a random oracle

Sponges

 Used and introduced in SHA3 aka Keccak

* Guido Bertoni, Joan Daemen, Michaél Peeters and Gilles Van Assche

M

| pad }

A - N I '

e
Eaiins)

C OpF——» — - -
i N - - S~ N —/

*-1
Y
Y

absorbing : squeezing

sponge

15

-] —— —

Compression Function
Design

Block-Cipher-based designs

* Traditional approach

* Many possible modes

* see Preneel, Govaerts, Vandewalle. Hash functions based on block
ciphers: a synthetic approach. CRYPTO’93

* security: Black, Rogaway, Shrimpton. Black-Box Analysis of the
Block-Cipher-Based Hash-Function Constructions from PGV.
CRYPTO’02

* Most popular: Matyas-Meyer-Oseas
M.

h, AL

IHV,

i+1

o
\/
y

Permutation-based designs

* Less frequent use
* Keccak compression function:

N\
AW
V"

> > ————
i II'IVi+1
—

* Important: NEVER hand out last ¢ bits of IHV!

Common security assessment

* Provable security analyzed in idealized models:
 ,Black-box models” (e.g. ideal cipher, random oracle, or
random permutation model)

* Proofs assuming underlying building block behaves
like such an idealized building block

 Building blocks then get cryptanalyzed, searching
for “non-random behavior”

Provable hash functions

* people don’t like that one can’t prove much about
hash functions

* reduction to established ‘hard problem’ such as
factoring is seen as an advantage

* Example: VSH — Very Smooth Hash
e Contini-Lenstra-Steinfeld 2006

* collision resistance provable under assumption that a
problem directly related to factoring is hard
 but still far from ideal
* bad performance compared to SHA-256
* all kinds of multiplicative relations between hash values exist

Life cycles of popular crvptographic hashes (the "Breakout" chart)

|Funu:ti0n

|Saefru

11990 (1991 (1992 1993 [1994 |1995 (1996 1997 [1998 |1999 2000 12001 [2002 [2003 [2004 2005 2006 [2007 [2008 [2009 2010 2011 [2012

IMD4

IMDS5

IMD?2

[RIPEMD

[HAVAL-128

SHA-1

RIPE'V]I} 128

|RIPE‘»1D 160

SHA-2 family

21

SHA-3

|
|
|
|
|
|
ISHA-0 |
|
|
|
(Keccak) ‘

[Key [Unbroken [Weakened [BRSREH Deprecated

|[1] Note that 128-bit hashes are at best 264 complexity to break; using a 128-bit hash is irresponsible based on sheer digest length.

[2] In 2007, the NIST launched the SHA-3 competition becanse "Although there is no specific reason to believe that a practical attack on any of the SHA-2 family of
hash functions is imminent, a successful collision attack on an algorithm in the SHA-2 family could have catastrophic effects for digital signatures." One vear later the first
strength reduction was published.

IThe Hash Function Lounge has an excellent list of references for most of the dates. Wikipedia now has references to the rest.

21

SHAttered SHAttered

The first concrete collision attack against SHA-1
https://shattered.io

G Google WG Google

Elie Bursztein Elie Bursztein
Ange Albertini Pr;‘ﬂe?:ec ?;?”i?:n Ange Albertini
Yarik Markov P Yarik Markov

The first concrete collision attack against SHA-1

Marc Stevens
Pierre Karpman

38762cf7f55934b34d179ae6a4c80cadccbb7f0a 1.pdf
38762cT71t55934b34d179ae6ad4c80cadccbb7f0a 2.pdf

Pbb787a73e37352192383abe7e2902936d1059ad9f1babdaaa9c1e58ee6970d0 1.pdf
4488775d29bdef7993367d541064dbdda50d383f89f0aal13a6ff2e0894ba5ff 2.pdf

22

Hash-based sighatures

Lamport-Diffie OTS (am9

Message M =bl,...,bm, OWF H * = n bit
SK /. .\H
H \-I / H
PK ® ®) pl;:n,o\ ki
bl bm Mux
S|g ° °) skt,,,c,m

19-9-2019 PAGE 24

EU-CMA for OTS

(o, M)

Success if M* #= M and
Verify(pk,c*, M*) = Accept

Security

Theorem:

If H is one-way then LD-OTS is one-time eu-cma-
secure.

Reduction

Input: y., k
Set H « hk

Replace random pk;,

P

sk, o sky 4
H H
L Pk, 4

sk 0 SK.1
H H
pkm,o pkm,l

Reduction

Adv. Message: M = bl,...,bm
If bi = b return fail
Set H « hy, else return Sign(M)

Replace random pk;,

Input: y,, k

S

/\

sk, o sky 4 ? L4 SKm,o SKpm,1
! !
H / H H / H
Pk1,o\ dkl,l pkm.O\ Iqkm,l
bl Mux b2 Mux bm Mux

Ky p1 ° ° ° sk

m,bm

Reduction

. X — %k E 3
Input: v, k Forgery: M* = b1*,...,bm*,
O = 01, ..,01
Set H « hy If bi # b return fail
Choose random pk; , Else return o,
sk, o sky 4 Oj* O) sk 0 SK.1
H H H H H
Pll;,o pll;,1 -_ L b 1 pl;:n,o pl;:n,l

Reduction - Analysis

Abort in two cases:

1.bi=b
probability 2 : b is a random bit

2.bi#b

probability 1 - 1/m: At least one bit has to flip as
M* #= M

Reduction succeeds with A’s success probability
times 1/2m.

Merkle’s Hash-based Sighatures

ESIG =(=2,25.00,0)

P

A [@ [w\ [w\ [w\ [w)

P p JO e Jo L Jo Jo

OTS: OTS QTS QTS QTS QTS OTS OTS
1% 1 7 1 1 sk i 1 1 I =

* o
v, .
......

Security

Theorem:

MSS is eu-cma-secure if OTS is a one-time eu-cma
secure signature scheme and H is a random element
from a family of collision resistant hash functions.

Questions?

Basic Building Blocks

the MD4 family of hash functions

35

MD4

/ (Rivest N

RIPEMD
(RIPE 1992)

|

RIPEMD-128
RIPEMD-160
RIPEMD-256
RIPEMD-320

(Dobbertin, Bosselaers,
Preneel 1992)

SHA-O
(NIST 1993)

MD5 HAVAL SHA-1
(Rivest 1992) (Zheng, Pieprzyk, (NIST 1995)
Seberry 1993)

!

SHA-224
SHA-256
SHA-384
SHA-512

(NIST 2004)

design of MD4 family compression

functions

message block
split into words
message expansion

input words for
each step

IHV = initial state

each step updates
state with an input
word

final state ‘added’
to [HV

(feed-forward)

36

y Wo -
M, c
‘o — W, -
x | M, e 1
Q =
O e
= :
) X > W, -
o © 2
®©)
g 2
o))
£ . ?
YE
M1 '
" Wr-1 =

M, W, are 32-bit words

state consists of
32-bit words

input IHV

h 4

initial state = input IHV

updated state

AR

updated state

A3

—¥

B

final state

output IHV ';fi_r?iérl state
+ input IHV

stepr

\ 3

stégb 3 stéb 2 st‘egb 1

design details

* MD4, MD5, SHA-0O, SHA-1 details:

512-bit message block split into 16 32-bit words

state consists of 4 (MD4, MD5) or 5 (SHA-0O, SHA-1) 32-bit
words

MD4: 3 rounds of 16 steps each, so 48 steps, 48 input words
MD?5: 4 rounds of 16 steps each, so 64 steps, 64 input words

SHA-0, SHA-1: 4 rounds of 20 steps each, so 80 steps, 80 input
words

message expansion and step operations use only very easy to
implement operations:

* bitwise Boolean operations

* bit shifts and bit rotations

* addition modulo 232

proper mixing believed to be cryptographically strong

message expansion

e MD4, MD5 use roundwise permutation, for MD5:
* Wo=Mgy Wy=M,, .., Wis = Mys,
* Wi =M, W, = M6, , W3, =M, (jump 5 mod 16)
° Wy, =M, Wiy = Ms, ..., W,; =M,, (jump 3 mod 16)
* Wyo=Mgy Wyg=M,, ..., Wgy =M, (jump 7 mod 16)

* SHA-O, SHA-1 use recursivity
c Wy=M, W,=M,, .., W, =M,
+ SHA-O: W, = W,3 XOR W, XOR W_,, XOR W_,.fori=16,.

* problem: kth bit influenced only by kt" bits of preceding
words, so not much diffusion

* SHA-1: W, = (W, XOR W, 4 XOR W, XOR W,)<<<1
(additional rotation by 1 bit,
this is the only difference between SHA-O and SHA-1)

38

., 19

Example: step operations in MD5

* in each step only one state word is updated
* the other state words are by 1
e state update:

A’=B+((A+f(B,C,D)+ W, +K)<<<s,)

K, s;step dependent constants,

+ is addition mod 237,

f;round dependend boolean functions:
fiix,y,z) =xy OR (-x)z fori=1, ..., 16,
fi{x,y,z) =xz OR y(-z) fori=17, ..., 32,
fi{x,y,z) =x XOR y XOR z for i =33, ..., 48,
fi{x,y,z) =y XOR (y OR (-z)) fori =49, ..., 64,
these functions are nonlinear, balanced, and
have an

39

Step operations in MD5

40

A B C D
v « N 7
< </
A2 N
A4
v
<<<
S
A2

