
Cryptographic Hash
Functions

Part II

Andreas Hülsing, TU/e

2MMC10 Cryptology

Hash function design

• Create fixed input size building block

• Use building block to build compression function

• Use “mode“ for length extension

2

Permutation /
Block cipher

Compression
function

Hash function

Reductionist proofs

Generic transformsEngineering

Cryptanalysis /
best practices

(Length-Extension) Modes

3

4

Merkle-Damgård construction

Given:

• compression function: 𝐶𝐹 ∶ 0,1 𝑛 × {0,1}𝑟 → {0,1}𝑛

Goal:

• Hash function: ℎ: 0,1 ∗ → {0,1}𝑛

5

Merkle-Damgård - iterated
compression

6

Merkle-Damgård construction

• Assume that message m can be split up into blocks m1, …, ms of equal block
length r

• most popular block length is r = 512

• compression function: 𝐶𝐹 ∶ 0,1 𝑛 × {0,1}𝑟 → {0,1}𝑛

• intermediate hash values (length n) as CF input and output

• message blocks as second input of CF

• start with fixed initial IHV0 (a.k.a. IV = initialization vector)

• iterate CF : IHV1 = CF(IHV0,m1), IHV2 = CF(IHV1,m2), …, IHVs = CF(IHVs-1,ms),

• take h(m) = IHVs as hash value

• advantages:
• this design makes streaming possible

• hash function analysis becomes compression function analysis

• analysis easier because domain of CF is finite

7

padding

• padding: add dummy bits to satisfy block length
requirement

• non-ambiguous padding: add one 1-bit and as
many 0-bits as necessary to fill the final block
• when original message length is a multiple of the block

length, apply padding anyway, adding an extra dummy
block

• any other non-ambiguous padding will work as well

8

Merkle-Damgård strengthening

• let padding leave final 64 bits open

• encode in those 64 bits the original message length
• that’s why messages of length ≥ 264 are not supported

• reasons:
• needed in the proof of the Merkle-Damgård theorem
• prevents some attacks such as

• trivial collisions for random IV

• now h(IHV0,m1||m2) = h(IHV1,m2)

• see next slide for more

9

Merkle-Damgård strengthening,
cont’d

• fixpoint attack

fixpoint: IHV, m such that CF(IHV,m) = IHV

• long message attack

10

compression function collisions
• collision for a compression function: m1, m2, IHV such that CF(IHV,m1) =

CF(IHV,m2)

• pseudo-collision for a compression function: m1, m2, IHV1, IHV2 such that
CF(IHV1,m1) = CF(IHV2,m2)

• Theorem (Merkle-Damgård): If the compression function CF is pseudo-
collision resistant, then a hash function h derived by Merkle-Damgård
iterated compression is collision resistant.

• Proof: Suppose 𝒉 𝒎𝟏 = 𝒉(𝒎𝟐), then

• If 𝒎𝟏, 𝒎𝟐 same size: locate the iteration where pseudo-collision occurs

• Else a pseudo-collision for CF appears in the last blocks (cont. length)

• Note:
• a method to find pseudo-collisions does not lead to a method to find collisions for the hash

function

• a method to find collisions for the compression function is almost a method to find
collisions for the hash function, we ‘only’ have a wrong IHV

Sponges

Given:

• permutation: 𝑓 ∶ {0,1}𝑏 → {0,1}𝑏

Goal:

• Hash function: ℎ: 0,1 ∗ → {0,1}𝑛

(actually ℎ: 0,1 ∗ → 0,1 ∗)

• (Already includes CF design, more later)

11

12

Sponges

• Used and introduced in SHA3 aka Keccak
• Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche

Intermezzo: Random oracles

• Models the perfect hash function

• Truely random function without any structure

• Best attacks: Generic attacks (No structure available!)

Issue:

• No way to build a RO with polynomial-size description

Mind Model:

• Lazy-sampling
• Imagine a black box implementing the function
• For every new query, a random response is sampled
• For old queries, former response is used

13

14

Sponge security

• Theorem (Indifferentiability from a random oracle):
If f is a random permutation, the expected complexity for differentiating a
sponge from a random oracle is 𝝅 𝟐𝒄/𝟐.

• Note:
• Neat way to simplify security arguments

• Implies bounds for all attacks that use less than 𝝅 𝟐𝒄/𝟐 queries

• Bounds are those of generic attacks against a random oracle

15

Sponges

• Used and introduced in SHA3 aka Keccak
• Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche

Compression Function
Design

16

Block-Cipher-based designs

• Traditional approach

• Many possible modes
• see Preneel, Govaerts, Vandewalle. Hash functions based on block

ciphers: a synthetic approach. CRYPTO’93

• security: Black, Rogaway, Shrimpton. Black-Box Analysis of the
Block-Cipher-Based Hash-Function Constructions from PGV.
CRYPTO’02

• Most popular: Matyas-Meyer-Oseas

17

IHVi

Mi

IHVi+1

Permutation-based designs

• Less frequent use

• Keccak compression function:

• Important: NEVER hand out last c bits of IHV!

18

r

c

IHVi IHVi+1

Mi

Common security assessment

• Provable security analyzed in idealized models:
• „Black-box models“ (e.g. ideal cipher, random oracle, or

random permutation model)

• Proofs assuming underlying building block behaves
like such an idealized building block

• Building blocks then get cryptanalyzed, searching
for “non-random behavior”

19

20

Provable hash functions

• people don’t like that one can’t prove much about
hash functions

• reduction to established ‘hard problem’ such as
factoring is seen as an advantage

• Example: VSH – Very Smooth Hash
• Contini-Lenstra-Steinfeld 2006

• collision resistance provable under assumption that a
problem directly related to factoring is hard

• but still far from ideal
• bad performance compared to SHA-256

• all kinds of multiplicative relations between hash values exist

21

22

Hash-based signatures

9/19/2019 https://huelsing.net 23

Lamport-Diffie OTS [Lam79]

Message M = b1,…,bm, OWF H = n bit

SK

PK

Sig

19-9-2019 PAGE 24

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H H

sk1,b1 skm,bm

*

Muxb1 Muxb2 Muxbm

EU-CMA for OTS

𝑝𝑘, 1𝑛

SIGN

𝑠𝑘

𝑀

(𝜎,𝑀)

(𝜎∗, 𝑀∗) Success if 𝑀∗ ≠ 𝑀 and
Verify 𝑝𝑘, 𝜎∗, 𝑀∗ = Accept

23.09.2013 | TU Darmstadt | Andreas Hülsing | 25

Security

Theorem:

If H is one-way then LD-OTS is one-time eu-cma-
secure.

Reduction
Input: 𝑦𝑐 , 𝑘

Set 𝐻 ← ℎ𝑘
Replace random pki,b

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H H

𝑦𝑐

Reduction
Input: 𝑦𝑐 , 𝑘

Set 𝐻 ← ℎ𝑘
Replace random pki,b

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H

sk1,b1 skm,bm

Muxb1 Muxb2 Muxbm

𝑦𝑐

Adv. Message: M = b1,…,bm
If bi = b return fail
else return Sign(M)

?

Reduction
Input: 𝑦𝑐 , 𝑘

Set 𝐻 ← ℎ𝑘
Choose random pki,b

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H

𝑦𝑐

Forgery: M* = b1*,…,bm*,
𝜎 = 𝜎1, … , 𝜎𝑚

If bi ≠ b return fail
Else return 𝜎𝑖∗

? 𝜎𝑖∗𝜎𝑖∗

Reduction - Analysis

Abort in two cases:

1. bi = b
probability ½ : b is a random bit

2. bi ≠ b

probability 1 - 1/m: At least one bit has to flip as
M* ≠ M

Reduction succeeds with A‘s success probability
times 1/2m.

Merkle’s Hash-based Signatures

19-9-2019 PAGE 31

OTS

OTS OTS OTS OTS OTS OTS OTS

HH H H H H H H

H H H H

H H

H

PK

SIG = (i=2, , , , ,)

OTS

SK

Security

Theorem:

MSS is eu-cma-secure if OTS is a one-time eu-cma
secure signature scheme and H is a random element
from a family of collision resistant hash functions.

Questions?

33

Basic Building Blocks

34

35

the MD4 family of hash functions

MD4

(Rivest 1990)

RIPEMD

(RIPE 1992)

RIPEMD-128

RIPEMD-160

RIPEMD-256

RIPEMD-320

(Dobbertin, Bosselaers,

Preneel 1992)

MD5

(Rivest 1992)

HAVAL

(Zheng, Pieprzyk,

Seberry 1993)

SHA-0

(NIST 1993)

SHA-1

(NIST 1995)

SHA-224

SHA-256

SHA-384

SHA-512

(NIST 2004)

36

design of MD4 family compression
functions

message block
split into words

message expansion
input words for
each step

IHV initial state
each step updates

state with an input
word

final state ‘added’
to IHV

(feed-forward)

37

design details
• MD4, MD5, SHA-0, SHA-1 details:

• 512-bit message block split into 16 32-bit words
• state consists of 4 (MD4, MD5) or 5 (SHA-0, SHA-1) 32-bit

words
• MD4: 3 rounds of 16 steps each, so 48 steps, 48 input words
• MD5: 4 rounds of 16 steps each, so 64 steps, 64 input words
• SHA-0, SHA-1: 4 rounds of 20 steps each, so 80 steps, 80 input

words
• message expansion and step operations use only very easy to

implement operations:
• bitwise Boolean operations
• bit shifts and bit rotations
• addition modulo 232

• proper mixing believed to be cryptographically strong

38

message expansion

• MD4, MD5 use roundwise permutation, for MD5:
• W0 = M0, W1 = M1, …, W15 = M15,
• W16 = M1, W17 = M6, …, W31 = M12, (jump 5 mod 16)
• W32 = M5, W33 = M8, …, W47 = M2, (jump 3 mod 16)
• W48 = M0, W49 = M7, …, W63 = M9 (jump 7 mod 16)

• SHA-0, SHA-1 use recursivity
• W0 = M0, W1 = M1, …, W15 = M15,
• SHA-0: Wi = Wi-3 XOR Wi-8 XOR Wi-14 XOR Wi-16 for i = 16, …, 79
• problem: kth bit influenced only by kth bits of preceding

words, so not much diffusion
• SHA-1: Wi = (Wi-3 XOR Wi-8 XOR Wi-14 XOR Wi-16)<<<1

(additional rotation by 1 bit,
this is the only difference between SHA-0 and SHA-1)

39

Example: step operations in MD5
• in each step only one state word is updated

• the other state words are rotated by 1

• state update:

A’ = B + ((A + fi(B,C,D) + Wi + Ki) <<< si)

Ki, si step dependent constants,

+ is addition mod 232,

fi round dependend boolean functions:

fi(x,y,z) = xy OR (¬x)z for i = 1, …, 16,

fi(x,y,z) = xz OR y(¬z) for i = 17, …, 32,

fi(x,y,z) = x XOR y XOR z for i = 33, …, 48,

fi(x,y,z) = y XOR (y OR (¬z)) for i = 49, …, 64,

these functions are nonlinear, balanced, and

have an avalanche effect

Step operations in MD5

40

