Cryptographic Hash
Functions
Part |

2MMC10 Cryptology

Andreas Hulsing

How are hash functions used?

* integrity protection
e cryptographic checksum (e.g. software downloads)
* for file system integrity (Bit-torrent, git)

e password hashing

 dedicated algorithms like scrypt / argon2 use hash functions
as building block

* MAC — message authentication codes

* Digital signature (“public key MAC”)

* Password-based key derivation

e Pseudo-random number generation (PRG)

What is a hash function?

- Applied answer

Function h: {0,1}" — {0, 1}"

Input: bit string x of arbitrary length
* |length may be O

* in practice a very large bound on the length is
imposed, such as 2% (= 2.1 million TB)

* input often called the message

Output: bit string h(x) of fixed length n
* e.g.n=128, 160, 224, 256, 384, 512
* compression

e output often called hash value, message digest,
fingerprint

h(x) is efficiently computable given x

no secret information, no secret key

1001110110001110110010110010010000
1101100001111000111000101010001101
0100010110011001001001001001010100
0110010101001011010100011011011.........

0110101000101000

Intermezzo: Formal treatment

e Efficient Algorithm
* Runs in polynomial time,
i.e. for input of length n, t, < n*= poly(n) for some constant k
* Probabilistic Polynomial Time (PPT) Algorithm:
* Randomized Algorithm
e Runs in polynomial time
* Outputs the right solution with some probability

Ill

* Negligible: “Vanishes faster than inverse polynomia
We call €(n) negligible if

(An, > 0)(Vn>n,):e(n) <

1
poly(n)

What is a hash function?
- Formal answer

e Efficient keyed function
. n 1(n) n £10110000111100011700010201000101
h' {0)1} x {OJ]-} — {0)1} 0100010110011001001001001001010100
. 0110010101001011010100011011011.........
* We write h(k,x) = hy(x)
* Key k in this case is public
information. Think of function f
description.

0110101000101000

Security properties:
Collision resistance

: For any PPT adversary A4,
the following probability is negligible in n:

Prik «<g {0,1}", (xq,x;) « A(k):

hi(x1) = he(x) A (X1 # x3)]

Security properties:
Preimage resistance / One-wayness

: For any PPT adversary 4,
the following probability is negligible in n:

Prlk «g {0,1}", x < {0,1}™,y « h; (x),
x" « A(k,y): hy(x") = y]

Formal security properties:
Second-preimage resistance

: For any PPT adversary
A, the following probability is negligible in n:

Pr(k <5 {0,1}", x < 10,1} x" « A(k, x):
hie(x) = Ry (x') A (x # x)]

Reductions

* Transform an algorithm for problem 1 into an
algorithm for problem 2.

* “Reduces problem 2 to problem 1“
(I can solve problem 2 by solving problem 1)

* Allows to relate the hardness of problems:

If there exists an efficient reduction that reduces
problem 2 to problem 1 then an efficient algorithm
solving problem 1 can be used to efficiently solve
problem 2.

Reductions Il

Use in cryptography:
* Relate security properties

 ,Provable Security”: Reduce an assumed to be hard
problem to breaking the security of your scheme.

e Actually this does not proof security! Only shows
that scheme is secure IF the problem is hard.

(Intuition: It shows, | can solve my problem by
breaking the security of the scheme)

Relations between hash function
security properties

Easy start: CR -> SPR

. If /1 is collision resistant then it is
second preimage resistant.

* By contradiction: Assume A breaks SPR of 4 then
we can build a reduction M4 that breaks CR.

« Given key k, M4 first samples random x « {0,1}!(™
M4 runs x" « A(k,x) and outputs (x, x')

* M4 runs in approx. same time as 4 and has same
success probability. -> Tight reduction

SPR -> PRE ?

. If /1 is second-preimage resistant
then it is also preimage resistant.

* By contradiction: Assume A breaks PRE of / then
we can build a reduction M4 that breaks SPR.

* Given key &, x, MAruns x" « A(k, h;(x)) and
outputs (x, x")

e M4 runs in same time as 4 and has same success
probability.

Do you find the mistake?

SPR -> PRE ?

. If /1 is second-preimage resistant
then it is also preimage resistant.

* the identity function id : {0,1}"* — {0,1}" is SPR but
not PRE.

SPR -> PRE ?

. If /1 is second-preimage resistant
then it is also preimage resistant.

e By contradiction: Assume A breaks PRE of /4 then we
can build an oracle machine M4 that breaks SPR.

« Giverrkey k, x, MAruns x' « A(k, hy(x)) and outputs
We are not guaranteed that x # x' !

e M4 runsin same time as 4 and has same success
probability.

Do you find the mistake?

15

SPR -> PRE ?

Theorem (informal, corrected): If h is second-preimage
resistant, [(n) > n, then it is also preimage resistant.

Proof:

* By contradiction: Assume A breaks PRE of h then we can
build an oracle machine M4 that breaks SPR.

* Given key &, x, M runs x' « A(k, hy(x)) and outputs (x, x)

* M4 runs in same time as 4 and has at least half the success
probability.

Can replace condition [(n) > n

Same corrections have to by requiring that h is “decisional
second preimage resistant”.

16

Summary: Relations

Stronger assumption
/ easier to break

Assumption /

Attacks

weaker assumption/
harder to break

17

generic (brute force) attacks

e assume: hash function behaves like random function

and can be
found by
search space: = n bits, = 2" hash function calls
can be found by
— search space: = '2n bits,
= 27" hash function calls

« this is a big difference
— MD5 is a 128 bit hash function

— (second) preimage random search: = EWG@MG@ZSGG
=~ 2128 = 3x1038 MD5 calls
1T WAl 8T 32T 128T

— collision birthday search: only . E‘"’ n
P56T 1P 16P
= 254 = 2x101° MD5 calls ol =

18

birthday paradox

given asetof t (= 10) elements

take a sample of size k (drawn with repetition)

in order to get a probability > 72 on a collision
(i.e. an element drawn at least twice)

khastobe > 1.2/t

if F: A — B isasurjective random function
and |A| > |B]

then one can expect a collision after about /|5 | random
function calls

19

meaningful birthdaying

(\,

* random birthdaying pfjjtw
» do exhaustive search on n/2 bits Q/ mm\
* messages will be ‘random’ ////(@370,\
u

* messages will not be ‘meaningful’

Yuval (1979)

* start with two meaningful messages m,, m, for which
you want to find a collision

e identify n/2 independent positions where the messages
can be changed at bit level without changing the
meaning

* e.g.tab €2 space, space <2 newline, etc.
* do random search on those positions

implementing birthdaying

* naive
* store 2”77 possible messages for m, and 2"/ possible
messages for m, and check all 2" pairs

* less naive

* store 2”7 possible messages for m, and for each possible
m, check whether its hash is in the list

* smart: with
e computational complexity still O(27/?)
* but only constant small storage required

Pollard-p and Floyd cycle finding

* iterate the hash function:
a,, a, = h(a,), a, = hla,), a; = h(a,), ...
* this is ultimately periodic:
* there are minimal t, p such that
Uiip = 0y
* theory of random functions:
both t, p are of size 27/2

* Floyd: start with (a,,0,) and compute
(a,,04), (05,06), (04,05), ..., (a,,0,,)
until a,, = a,;
this happens forsomeg<t+p

22

a @

a1

at+p-1

