
Cryptographic Hash
Functions

Part I

Andreas Hülsing

2MMC10 Cryptology

2

How are hash functions used?

• integrity protection
• cryptographic checksum (e.g. software downloads)
• for file system integrity (Bit-torrent, git)

• password hashing
• dedicated algorithms like scrypt / argon2 use hash functions

as building block

• MAC – message authentication codes

• Digital signature (“public key MAC”)

• Password-based key derivation

• Pseudo-random number generation (PRG)

• …

3

What is a hash function?
- Applied answer

• Function 𝐡: 𝟎, 𝟏 ∗ → 𝟎, 𝟏 𝒏

• Input: bit string x of arbitrary length
• length may be 0

• in practice a very large bound on the length is
imposed, such as 264 (≈ 2.1 million TB)

• input often called the message

• Output: bit string h(x) of fixed length n
• e.g. n = 128, 160, 224, 256, 384, 512

• compression

• output often called hash value, message digest,
fingerprint

• h(x) is efficiently computable given x

• no secret information, no secret key

Intermezzo: Formal treatment

• Efficient Algorithm
• Runs in polynomial time,

i.e. for input of length n, tA ≤ nk = poly(n) for some constant k

• Probabilistic Polynomial Time (PPT) Algorithm:
• Randomized Algorithm

• Runs in polynomial time

• Outputs the right solution with some probability

• Negligible: “Vanishes faster than inverse polynomial“
We call 𝛆 𝐧 negligible if

∃𝒏𝒄 > 𝟎 ∀𝒏 > 𝒏𝒄 : 𝛆 𝐧 <
𝟏

𝒑𝒐𝒍𝒚(𝒏)

4

5

What is a hash function?
- Formal answer

• Efficient keyed function
h: 0,1 𝑛 × 0,1 𝑙(𝑛)→ 0,1 𝑛

• We write h k, x = ℎ𝑘(𝑥)

• Key 𝑘 in this case is public
information. Think of function
description.

6

Security properties:
Collision resistance

Collision resistance (CR): For any PPT adversary A,
the following probability is negligible in n:

𝑃𝑟[𝑘 ←𝑅 0,1 𝑛, 𝑥1, 𝑥2 ← 𝐴 𝑘 :

ℎ𝑘 𝑥1 = ℎ𝑘 𝑥2 ∧ 𝑥1 ≠ 𝑥2]

7

Security properties:
Preimage resistance / One-wayness

Preimage resistance (PRE): For any PPT adversary A,
the following probability is negligible in n:

𝑃𝑟[𝑘 ←𝑅 0,1 𝑛, 𝑥 ←𝑅 0,1 𝑙 𝑛 , 𝑦 ← ℎ𝑘 𝑥 ,

𝑥′ ← 𝐴 𝑘, 𝑦 : ℎ𝑘 𝑥′ = 𝑦]

8

Formal security properties:
Second-preimage resistance

Second-preimage resistance: For any PPT adversary
A, the following probability is negligible in n:

𝑃𝑟[𝑘 ←𝑅 0,1 𝑛, 𝑥 ←𝑅 0,1 𝑙 𝑛 , 𝑥′ ← 𝐴 𝑘, 𝑥 :

ℎ𝑘 𝑥 = ℎ𝑘 𝑥′ ∧ 𝑥 ≠ 𝑥′]

Reductions

• Transform an algorithm for problem 1 into an
algorithm for problem 2.

• “Reduces problem 2 to problem 1“
(I can solve problem 2 by solving problem 1)

• Allows to relate the hardness of problems:

If there exists an efficient reduction that reduces
problem 2 to problem 1 then an efficient algorithm
solving problem 1 can be used to efficiently solve
problem 2.

9

Reductions II

Use in cryptography:

• Relate security properties

• „Provable Security“: Reduce an assumed to be hard
problem to breaking the security of your scheme.

• Actually this does not proof security! Only shows
that scheme is secure IF the problem is hard.

(Intuition: It shows, I can solve my problem by
breaking the security of the scheme)

10

Relations between hash function
security properties

11

Easy start: CR -> SPR

Theorem (informal): If h is collision resistant then it is
second preimage resistant.

Proof:

• By contradiction: Assume A breaks SPR of h then
we can build a reduction MA that breaks CR.

• Given key k, MA first samples random 𝑥 ← 0,1 𝑙(𝑛)

• MA runs 𝑥′ ← 𝐴 𝑘, 𝑥 and outputs 𝑥, 𝑥′

• MA runs in approx. same time as A and has same
success probability. -> Tight reduction

12

SPR -> PRE ?

Theorem (informal): If h is second-preimage resistant
then it is also preimage resistant.

Proof:

• By contradiction: Assume A breaks PRE of h then
we can build a reduction MA that breaks SPR.

• Given key k, x, MA runs 𝑥′ ← 𝐴 𝑘, ℎ𝑘(𝑥) and
outputs 𝑥, 𝑥′

• MA runs in same time as A and has same success
probability.

Do you find the mistake?

13

SPR -> PRE ?

Theorem (informal): If h is second-preimage resistant
then it is also preimage resistant.

Counter example:

• the identity function id : 0,1 𝑛 → 0,1 𝑛 is SPR but
not PRE.

14

SPR -> PRE ?

Theorem (informal): If h is second-preimage resistant
then it is also preimage resistant.

Proof:

• By contradiction: Assume A breaks PRE of h then we
can build an oracle machine MA that breaks SPR.

• Given key k, x, MA runs 𝑥′ ← 𝐴 𝑘, ℎ𝑘(𝑥) and outputs
𝑥, 𝑥′

• MA runs in same time as A and has same success
probability.

Do you find the mistake?

15

We are not guaranteed that 𝒙 ≠ 𝒙′ !

SPR -> PRE ?

Theorem (informal, corrected): If ℎ is second-preimage
resistant, 𝑙 𝑛 ≫ 𝑛, then it is also preimage resistant.

Proof:

• By contradiction: Assume A breaks PRE of ℎ then we can
build an oracle machine MA that breaks SPR.

• Given key k, x, MA runs 𝑥′ ← 𝐴 𝑘, ℎ𝑘(𝑥) and outputs 𝑥, 𝑥′

• MA runs in same time as A and has at least half the success
probability.

Same corrections have to be applied for CR -> PRE

16

Can replace condition 𝑙 𝑛 ≫ 𝑛
by requiring that h is “decisional

second preimage resistant”.

Summary: Relations

17

Collision-Resistance

2nd-Preimage-
Resistance

One-way

A
ss

u
m

p
ti

o
n

 /

A
tt

ac
ks

Stronger assumption
/ easier to break

weaker assumption/
harder to break

18

generic (brute force) attacks

• assume: hash function behaves like random function
• preimages and second preimages can be

found by random guessing
search space: ≈ n bits, ≈ 2n hash function calls

• collisions can be found by birthdaying

– search space: ≈ ½n bits,

≈ 2½n hash function calls

• this is a big difference

– MD5 is a 128 bit hash function

– (second) preimage random search:

≈ 2128 ≈ 3x1038 MD5 calls

– collision birthday search: only

≈ 264 ≈ 2x1019 MD5 calls

19

birthday paradox

• birthday paradox

given a set of t (≥ 10) elements

take a sample of size k (drawn with repetition)

in order to get a probability ≥ ½ on a collision

(i.e. an element drawn at least twice)

k has to be > 1.2 𝑡

• consequence

if 𝐹 ∶ 𝐴 → 𝐵 is a surjective random function

and |𝐴| ≫ |𝐵|

then one can expect a collision after about |𝐵| random
function calls

20

meaningful birthdaying

• random birthdaying
• do exhaustive search on n/2 bits
• messages will be ‘random’
• messages will not be ‘meaningful’

• Yuval (1979)
• start with two meaningful messages m1, m2 for which

you want to find a collision
• identify n/2 independent positions where the messages

can be changed at bit level without changing the
meaning
• e.g. tab  space, space  newline, etc.

• do random search on those positions

21

implementing birthdaying

• naïve
• store 2n/2 possible messages for m1 and 2n/2 possible

messages for m2 and check all 2n pairs

• less naïve
• store 2n/2 possible messages for m1 and for each possible

m2 check whether its hash is in the list

• smart: Pollard-ρ with Floyd’s cycle finding algorithm
• computational complexity still O(2n/2)

• but only constant small storage required

22

Pollard-ρ and Floyd cycle finding
• Pollard-ρ

• iterate the hash function:
a0, a1 = h(a0), a2 = h(a1), a3 = h(a2), …

• this is ultimately periodic:
• there are minimal t, p such that

at+p = at

• theory of random functions:
both t, p are of size 2n/2

• Floyd’s cycle finding algorithm
• Floyd: start with (a1,a2) and compute

(a2,a4), (a3,a6), (a4,a8), …, (aq,a2q)
until a2q = aq;
this happens for some q < t + p

