Cryptographic Hash Functions Part I

2MMC10 Cryptology

Andreas Hülsing

How are hash functions used?

- integrity protection
 - cryptographic checksum (e.g. software downloads)
 - for file system integrity (Bit-torrent, git)
- password hashing
 - dedicated algorithms like scrypt / argon2 use hash functions as building block
- MAC message authentication codes
- Digital signature ("public key MAC")
- Password-based key derivation
- Pseudo-random number generation (PRG)

• .

What is a hash function? - Applied answer

- Function $h: \{0, 1\}^* \rightarrow \{0, 1\}^n$
- Input: bit string x of arbitrary length
 - length may be 0
 - in practice a very large bound on the length is imposed, such as 2⁶⁴ (≈ 2.1 million TB)
 - input often called the *message*
- Output: bit string *h*(*x*) of fixed length *n*
 - e.g. *n* = 128, 160, 224, 256, 384, 512
 - compression
 - output often called *hash value, message digest, fingerprint*
- *h*(*x*) is efficiently computable given *x*
- no secret information, no secret key

Intermezzo: Formal treatment

- Efficient Algorithm
 - Runs in polynomial time,
 - i.e. for input of length n, $t_A \le n^k = poly(n)$ for some constant k
- Probabilistic Polynomial Time (PPT) Algorithm:
 - Randomized Algorithm
 - Runs in polynomial time
 - Outputs the right solution with some probability
- Negligible: "Vanishes faster than inverse polynomial" We call $\epsilon(n)$ negligible if

$$(\exists n_c > 0)(\forall n > n_c): \varepsilon(n) < \frac{1}{poly(n)}$$

What is a hash function? - Formal answer

- Efficient keyed function h: $\{0,1\}^n \times \{0,1\}^{l(n)} \rightarrow \{0,1\}^n$
- We write $h(k, x) = h_k(x)$
- Key k in this case is public information. Think of function description.

Security properties: Collision resistance

Collision resistance (CR): For any PPT adversary *A*, the following probability is negligible in *n*:

$$Pr[k \leftarrow_R \{0,1\}^n, (x_1, x_2) \leftarrow A(k):$$
$$h_k(x_1) = h_k(x_2) \land (x_1 \neq x_2)]$$

Security properties: Preimage resistance / One-wayness

Preimage resistance (PRE): For any PPT adversary A, the following probability is negligible in n:

$$Pr[k \leftarrow_R \{0,1\}^n, x \leftarrow_R \{0,1\}^{l(n)}, y \leftarrow h_k(x),$$
$$x' \leftarrow A(k,y): h_k(x') = y]$$

Formal security properties: Second-preimage resistance

Second-preimage resistance: For any PPT adversary *A*, the following probability is negligible in *n*:

$$Pr[k \leftarrow_R \{0,1\}^n, x \leftarrow_R \{0,1\}^{l(n)}, x' \leftarrow A(k,x):$$
$$h_k(x) = h_k(x') \land (x \neq x')]$$

Reductions

- Transform an algorithm for problem 1 into an algorithm for problem 2.
- "Reduces problem 2 to problem 1"
 (I can solve problem 2 by solving problem 1)
- Allows to relate the hardness of problems:

If there exists an efficient reduction that reduces problem 2 to problem 1 then an efficient algorithm solving problem 1 can be used to efficiently solve problem 2.

Reductions II

Use in cryptography:

- Relate security properties
- "Provable Security": Reduce an assumed to be hard problem to breaking the security of your scheme.
- Actually this does not proof security! Only shows that scheme is secure IF the problem is hard.

(Intuition: It shows, I can solve my problem by breaking the security of the scheme)

Relations between hash function security properties

Easy start: CR -> SPR

Theorem (informal): If *h* is collision resistant then it is second preimage resistant.

Proof:

- By contradiction: Assume A breaks SPR of h then we can build a reduction M^A that breaks CR.
- Given key k, M^A first samples random $x \leftarrow \{0,1\}^{l(n)}$
- M^A runs $x' \leftarrow A(k, x)$ and outputs (x, x')
- *M*^A runs in approx. same time as *A* and has same success probability. -> Tight reduction

Theorem (informal): If *h* is second-preimage resistant then it is also preimage resistant.

Proof:

- By contradiction: Assume A breaks PRE of h then we can build a reduction M^A that breaks SPR.
- Given key k, x, M^A runs $x' \leftarrow A(k, h_k(x))$ and outputs (x, x')
- *M*^A runs in same time as *A* and has same success probability.

Do you find the mistake?

Theorem (informal): If *h* is second-preimage resistant then it is also preimage resistant.

Counter example:

• the *identity function id* : $\{0,1\}^n \rightarrow \{0,1\}^n$ is SPR but not PRE.

Theorem (informal): If *h* is second-preimage resistant then it is also preimage resistant.

Proof:

- By contradiction: Assume A breaks PRE of h then we can build an oracle machine M^A that breaks SPR.
- Given key k, x, M^A runs $x' \leftarrow A(k, h_k(x))$ and outputs (x, x') We are not guaranteed that $x \neq x'$!
- M^A runs in same time as A and has same success probability.

Do you find the mistake?

Theorem (informal, corrected): If h is second-preimage resistant, $l(n) \gg n$, then it is also preimage resistant. Proof:

- By contradiction: Assume A breaks PRE of h then we can build an oracle machine M^A that breaks SPR.
- Given key k, x, M^A runs $x' \leftarrow A(k, h_k(x))$ and outputs (x, x')
- *M^A* runs in same time as *A* and has at least half the success probability.

Same corrections have to

Can replace condition $l(n) \gg n$ by requiring that h is "decisional second preimage resistant".

Summary: Relations

generic (brute force) attacks

- assume: hash function behaves like random function
- preimages and second preimages can be found by random guessing search space: ≈ n bits, ≈ 2ⁿ hash function calls
- collisions can be found by birthdaying
 - search space: $\approx \frac{1}{2}n$ bits,
 - $\approx 2^{\frac{1}{2}n}$ hash function calls
- this is a big difference
 - MD5 is a 128 bit hash function
 - (second) preimage random search:
 ≈ 2¹²⁸ ≈ 3x10³⁸ MD5 calls
 - collision birthday search: only
 ≈ 2⁶⁴ ≈ 2x10¹⁹ MD5 calls

birthday paradox

birthday paradox

given a set of $t (\geq 10)$ elements take a sample of size k (drawn with repetition) in order to get a probability $\geq \frac{1}{2}$ on a collision

(i.e. an element drawn at least twice)

k has to be > $1.2\sqrt{t}$

consequence

if $F : A \rightarrow B$ is a surjective random function and $|A| \gg |B|$

then one can expect a collision after about $\sqrt{|B|}$ random function calls

meaningful birthdaying

- random birthdaying
 - do exhaustive search on n/2 bits
 - messages will be 'random'
 - messages will not be 'meaningful'
- Yuval (1979)
 - start with two meaningful messages m_1 , m_2 for which you want to find a collision
 - identify n/2 independent positions where the messages can be changed at bit level without changing the meaning
 - e.g. tab $\leftarrow \rightarrow$ space, space $\leftarrow \rightarrow$ newline, etc.
 - do random search on those positions

implementing birthdaying

- naïve
 - store $2^{n/2}$ possible messages for m_1 and $2^{n/2}$ possible messages for m_2 and check all 2^n pairs
- less naïve
 - store $2^{n/2}$ possible messages for m_1 and for each possible m_2 check whether its hash is in the list
- smart: Pollard-p with Floyd's cycle finding algorithm
 - computational complexity still O(2^{n/2})
 - but only constant small storage required

Pollard-p and Floyd cycle finding

- Pollard-p
 - iterate the hash function:

 $a_0, a_1 = h(a_0), a_2 = h(a_1), a_3 = h(a_2), \dots$

- this is ultimately periodic:
 - there are minimal *t*, *p* such that
 *a*_{t+p} = *a*_t
 - theory of random functions:
 both t, p are of size 2^{n/2}
- Floyd's cycle finding algorithm
 - Floyd: start with (a₁,a₂) and compute (a₂,a₄), (a₃,a₆), (a₄,a₈), ..., (a_q,a_{2q}) until a_{2q} = a_q; this happens for some q < t + p

