
Introduction to the theory of secret key
cryptography

Andreas Hülsing
Eindhoven University of Technology

16 October 2019

Secret key encryption MAC

Main primitives of secret key / symmetric cryptography

High-level primitives

Secret key encryption (SKE)

Provides: Secrecy
Applications: File
encryption,
communication secrecy

Message authentication
codes (MAC)

Provides: Integrity &
authentication
Applications: Secure
communication (allows for
deniability), secure
storage

Low-level primitives

Pseudorandom generator
(PRG) / function (PRF)

Provides: Pseudorandom
behaviour
Applications: Replace
random bits / functions
with deterministic object

Cryptographic hash
functions

Provides: One-wayness,
collision resistance
Applications: From digital
signatures to password
hashing and PoW

2 / 50

Secret key encryption MAC

Main primitives of secret key / symmetric cryptography

High-level primitives

Secret key encryption (SKE)

Provides: Secrecy
Applications: File
encryption,
communication secrecy

Message authentication
codes (MAC)

Provides: Integrity &
authentication
Applications: Secure
communication (allows for
deniability), secure
storage

Low-level primitives

Pseudorandom generator
(PRG) / function (PRF)

Provides: Pseudorandom
behaviour
Applications: Replace
random bits / functions
with deterministic object

Cryptographic hash
functions

Provides: One-wayness,
collision resistance
Applications: From digital
signatures to password
hashing and PoW

2 / 50

Secret key encryption MAC

Main primitives of secret key / symmetric cryptography

High-level primitives

Secret key encryption (SKE)

Provides: Secrecy
Applications: File
encryption,
communication secrecy

Message authentication
codes (MAC)

Provides: Integrity &
authentication
Applications: Secure
communication (allows for
deniability), secure
storage

Low-level primitives

Pseudorandom generator
(PRG) / function (PRF)

Provides: Pseudorandom
behaviour
Applications: Replace
random bits / functions
with deterministic object

Cryptographic hash
functions

Provides: One-wayness,
collision resistance
Applications: From digital
signatures to password
hashing and PoW

2 / 50

Secret key encryption MAC

Main primitives of secret key / symmetric cryptography

High-level primitives

Secret key encryption (SKE)

Provides: Secrecy
Applications: File
encryption,
communication secrecy

Message authentication
codes (MAC)

Provides: Integrity &
authentication
Applications: Secure
communication (allows for
deniability), secure
storage

Low-level primitives

Pseudorandom generator
(PRG) / function (PRF)

Provides: Pseudorandom
behaviour
Applications: Replace
random bits / functions
with deterministic object

Cryptographic hash
functions

Provides: One-wayness,
collision resistance
Applications: From digital
signatures to password
hashing and PoW

2 / 50

Secret key encryption MAC

Main primitives of secret key / symmetric cryptography

High-level primitives

Secret key encryption (SKE)

Provides: Secrecy
Applications: File
encryption,
communication secrecy

Message authentication
codes (MAC)

Provides: Integrity &
authentication
Applications: Secure
communication (allows for
deniability), secure
storage

Low-level primitives

Pseudorandom generator
(PRG) / function (PRF)

Provides: Pseudorandom
behaviour
Applications: Replace
random bits / functions
with deterministic object

Cryptographic hash
functions

Provides: One-wayness,
collision resistance
Applications: From digital
signatures to password
hashing and PoW

2 / 50

Secret key encryption MAC

Secret key encryption

3 / 50

Secret key encryption MAC

Secret key encryption (SKE)

4 / 50

Secret key encryption MAC

Secret key cryptography

Definition (Secret key encryption scheme)

A secret key encryption scheme is a tripple of algorithms E =
(Gen, Enc, Dec) and a message or plaintext space M such that
the following holds

Gen is a probabilistic algorithm that outputs a key k . The
output space of Gen is called key space K.

Enc takes as inputs a key k ∈ K and message m ∈M,
and outputs ciphertext c = Enck(m). The output
space of Enc is called ciphertext space C.

Dec is a deterministic algorithm that takes as inputs a key
k ∈ K and ciphertext c ∈ C and outputs a plaintext
m′ ∈M : m′ = Deck(c).

Correctness: (∀k ← Gen(),∀m ∈M) : Deck(Enck(m)) = m

5 / 50

Secret key encryption MAC

How to define security?

Definition (Perfect secrecy)

A secret key encryption scheme E = (Gen, Enc, Dec) with
message space M is perfectly secret if for every probability
distribution over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr [C = c] > 0:

Pr [M = m | C = c] = Pr [M = m]

Perfect secrecy considers adversaries A with unlimited power.

6 / 50

Secret key encryption MAC

Is perfect secrecy achievable?

A scheme that is perfectly secret is Vernam’s one-time pad (OTP):

Construction (One-time pad)

Let M = {0, 1}`(= K = C), the one-time pad is the encryption
scheme consisting of the following three algorithms:

Gen(): Return k ←R {0, 1}`.
Enck(m): Return c = m ⊕ k.

Deck(c): Return m′ = c ⊕ k.

Correctness

Deck(Enck(m)) = (m ⊕ k)⊕ k = m

Main observation behind security proof

For every pair (m, c) of message and ciphertext there exists exactly
one key that encrypts m as c .

7 / 50

Secret key encryption MAC

Is perfect secrecy achievable?

A scheme that is perfectly secret is Vernam’s one-time pad (OTP):

Construction (One-time pad)

Let M = {0, 1}`(= K = C), the one-time pad is the encryption
scheme consisting of the following three algorithms:

Gen(): Return k ←R {0, 1}`.
Enck(m): Return c = m ⊕ k.

Deck(c): Return m′ = c ⊕ k.

Correctness

Deck(Enck(m)) = (m ⊕ k)⊕ k = m

Main observation behind security proof

For every pair (m, c) of message and ciphertext there exists exactly
one key that encrypts m as c .

7 / 50

Secret key encryption MAC

Is perfect secrecy achievable?

A scheme that is perfectly secret is Vernam’s one-time pad (OTP):

Construction (One-time pad)

Let M = {0, 1}`(= K = C), the one-time pad is the encryption
scheme consisting of the following three algorithms:

Gen(): Return k ←R {0, 1}`.
Enck(m): Return c = m ⊕ k.

Deck(c): Return m′ = c ⊕ k.

Correctness

Deck(Enck(m)) = (m ⊕ k)⊕ k = m

Main observation behind security proof

For every pair (m, c) of message and ciphertext there exists exactly
one key that encrypts m as c .

7 / 50

Secret key encryption MAC

Is perfect secrecy efficiently achievable?

Theorem

Let E be a perfectly secret encryption scheme over message space
M, and let K be the key space determined by Gen. Then

|K| ≥ |M|.

Proof sketch

Assume |K| < |M|.
1 An arbitrary ciphertext c can only decrypt to ≤ |K| different

messages.

2 Consequently, there exist messages m such that
Pr [M = m | C = c] = 0.

3 If we choose the uniform distribution as message distribution
Pr [M = m] > 0.

Hence, E is not perfectly secure.

8 / 50

Secret key encryption MAC

Is perfect secrecy efficiently achievable?

Theorem

Let E be a perfectly secret encryption scheme over message space
M, and let K be the key space determined by Gen. Then

|K| ≥ |M|.

Proof sketch

Assume |K| < |M|.
1 An arbitrary ciphertext c can only decrypt to ≤ |K| different

messages.

2 Consequently, there exist messages m such that
Pr [M = m | C = c] = 0.

3 If we choose the uniform distribution as message distribution
Pr [M = m] > 0.

Hence, E is not perfectly secure.
8 / 50

Secret key encryption MAC

Back to square 1: How to define security?

Consider security against efficient (= computationally bounded [=
polytime]) adversaries.

Experiment- / game-based security definitions: We define a game
that is played by the adversary and analyze its success probability.

9 / 50

Secret key encryption MAC

Attempt 1: Semantic security

Intuition: Everything adversary A learns about m knowing c , one
could have learned without knowing c.

Simulation-based security: A is compared to simulator S which
plays in a slightly different ‘experiment’ (real VS ideal).

ExpSEM
E,A (n):

A chooses a challenge template:

a message distribution X on plaintext space M,

an advice function h :M→ N,

a target function f :M→ N.

x is sampled from X and A receives (Enck(x), h(x)). A succeeds
if A(Enck(x), h(x)) = f (x).
(S only receives h(x). S succeeds if S(h(x)) = f (x).)

10 / 50

Secret key encryption MAC

Attempt 1: Semantic security

Intuition: Everything adversary A learns about m knowing c , one
could have learned without knowing c.
Simulation-based security: A is compared to simulator S which
plays in a slightly different ‘experiment’ (real VS ideal).

ExpSEM
E,A (n):

A chooses a challenge template:

a message distribution X on plaintext space M,

an advice function h :M→ N,

a target function f :M→ N.

x is sampled from X and A receives (Enck(x), h(x)). A succeeds
if A(Enck(x), h(x)) = f (x).
(S only receives h(x). S succeeds if S(h(x)) = f (x).)

10 / 50

Secret key encryption MAC

Attempt 1: Semantic security

Intuition: Everything adversary A learns about m knowing c , one
could have learned without knowing c.
Simulation-based security: A is compared to simulator S which
plays in a slightly different ‘experiment’ (real VS ideal).

ExpSEM
E,A (n):

A chooses a challenge template:

a message distribution X on plaintext space M,

an advice function h :M→ N,

a target function f :M→ N.

x is sampled from X and A receives (Enck(x), h(x)). A succeeds
if A(Enck(x), h(x)) = f (x).
(S only receives h(x). S succeeds if S(h(x)) = f (x).)

10 / 50

Secret key encryption MAC

Attempt 1: Semantic security

Intuition: Everything adversary A learns about m knowing c , one
could have learned without knowing c.
Simulation-based security: A is compared to simulator S which
plays in a slightly different ‘experiment’ (real VS ideal).

ExpSEM
E,A (n):

A chooses a challenge template:

a message distribution X on plaintext space M,

an advice function h :M→ N,

a target function f :M→ N.

x is sampled from X and A receives (Enck(x), h(x)). A succeeds
if A(Enck(x), h(x)) = f (x).
(S only receives h(x). S succeeds if S(h(x)) = f (x).)

10 / 50

Secret key encryption MAC

Attempt 1: Semantic security

Intuition: Everything adversary A learns about m knowing c , one
could have learned without knowing c.
Simulation-based security: A is compared to simulator S which
plays in a slightly different ‘experiment’ (real VS ideal).

ExpSEM
E,A (n):

A chooses a challenge template:

a message distribution X on plaintext space M,

an advice function h :M→ N,

a target function f :M→ N.

x is sampled from X and A receives (Enck(x), h(x)). A succeeds
if A(Enck(x), h(x)) = f (x).
(S only receives h(x). S succeeds if S(h(x)) = f (x).)

10 / 50

Secret key encryption MAC

Attempt 1: Semantic security

Intuition: Everything adversary A learns about m knowing c , one
could have learned without knowing c.
Simulation-based security: A is compared to simulator S which
plays in a slightly different ‘experiment’ (real VS ideal).

ExpSEM
E,A (n):

A chooses a challenge template:

a message distribution X on plaintext space M,

an advice function h :M→ N,

a target function f :M→ N.

x is sampled from X and A receives (Enck(x), h(x)). A succeeds
if A(Enck(x), h(x)) = f (x).
(S only receives h(x). S succeeds if S(h(x)) = f (x).)

10 / 50

Secret key encryption MAC

Attempt 1: Semantic security

Intuition: Everything adversary A learns about m knowing c , one
could have learned without knowing c.
Simulation-based security: A is compared to simulator S which
plays in a slightly different ‘experiment’ (real VS ideal).

ExpSEM
E,A (n):

A chooses a challenge template:

a message distribution X on plaintext space M,

an advice function h :M→ N,

a target function f :M→ N.

x is sampled from X and A receives (Enck(x), h(x)). A succeeds
if A(Enck(x), h(x)) = f (x).

(S only receives h(x). S succeeds if S(h(x)) = f (x).)

10 / 50

Secret key encryption MAC

Attempt 1: Semantic security

Intuition: Everything adversary A learns about m knowing c , one
could have learned without knowing c.
Simulation-based security: A is compared to simulator S which
plays in a slightly different ‘experiment’ (real VS ideal).

ExpSEM
E,A (n):

A chooses a challenge template:

a message distribution X on plaintext space M,

an advice function h :M→ N,

a target function f :M→ N.

x is sampled from X and A receives (Enck(x), h(x)). A succeeds
if A(Enck(x), h(x)) = f (x).
(S only receives h(x). S succeeds if S(h(x)) = f (x).)

10 / 50

Secret key encryption MAC

Attempt 1: Semantic security

Definition (Semantic Security (SEM))

A secret key encryption scheme has semantic security if for any
efficient adversary A there exists an efficient simulator S such that
their probabilites of success playing ExpSEM

E,A (n) are negligibly close
to each other.

For unbounded adversaries this is equivalent to perfect secrecy.

This definition is cumbersome to work with!

11 / 50

Secret key encryption MAC

Attempt 1: Semantic security

Definition (Semantic Security (SEM))

A secret key encryption scheme has semantic security if for any
efficient adversary A there exists an efficient simulator S such that
their probabilites of success playing ExpSEM

E,A (n) are negligibly close
to each other.

For unbounded adversaries this is equivalent to perfect secrecy.

This definition is cumbersome to work with!

11 / 50

Secret key encryption MAC

Attempt 2: Indistinguishable ciphertext security

ExpIND
E,A (n):

1 k ← Gen(1n)

2 m0,m1 ← A(1n) with m0,m1 ∈M∧ |m0| = |m1|
3 b ←R {0, 1}, c ← Enck(mb)

4 b′ ← A(c)

5 Output 1 if b′ = b, otherwise 0

Definition (Indistinguishable ciphertexts (IND))

A secret key encryption scheme E has indistinguishable ciphertexts
if for all efficient adversaries A their advantage ε in winning above
game is negligible

Pr
[
ExpIND

E,A (n) = 1
]

=
1

2
+ ε.

This definition is a lot easier to work with and equivalent to SEM!

12 / 50

Secret key encryption MAC

Attempt 2: Indistinguishable ciphertext security

ExpIND
E,A (n):

1 k ← Gen(1n)

2 m0,m1 ← A(1n) with m0,m1 ∈M∧ |m0| = |m1|

3 b ←R {0, 1}, c ← Enck(mb)

4 b′ ← A(c)

5 Output 1 if b′ = b, otherwise 0

Definition (Indistinguishable ciphertexts (IND))

A secret key encryption scheme E has indistinguishable ciphertexts
if for all efficient adversaries A their advantage ε in winning above
game is negligible

Pr
[
ExpIND

E,A (n) = 1
]

=
1

2
+ ε.

This definition is a lot easier to work with and equivalent to SEM!

12 / 50

Secret key encryption MAC

Attempt 2: Indistinguishable ciphertext security

ExpIND
E,A (n):

1 k ← Gen(1n)

2 m0,m1 ← A(1n) with m0,m1 ∈M∧ |m0| = |m1|
3 b ←R {0, 1}, c ← Enck(mb)

4 b′ ← A(c)

5 Output 1 if b′ = b, otherwise 0

Definition (Indistinguishable ciphertexts (IND))

A secret key encryption scheme E has indistinguishable ciphertexts
if for all efficient adversaries A their advantage ε in winning above
game is negligible

Pr
[
ExpIND

E,A (n) = 1
]

=
1

2
+ ε.

This definition is a lot easier to work with and equivalent to SEM!

12 / 50

Secret key encryption MAC

Attempt 2: Indistinguishable ciphertext security

ExpIND
E,A (n):

1 k ← Gen(1n)

2 m0,m1 ← A(1n) with m0,m1 ∈M∧ |m0| = |m1|
3 b ←R {0, 1}, c ← Enck(mb)

4 b′ ← A(c)

5 Output 1 if b′ = b, otherwise 0

Definition (Indistinguishable ciphertexts (IND))

A secret key encryption scheme E has indistinguishable ciphertexts
if for all efficient adversaries A their advantage ε in winning above
game is negligible

Pr
[
ExpIND

E,A (n) = 1
]

=
1

2
+ ε.

This definition is a lot easier to work with and equivalent to SEM!

12 / 50

Secret key encryption MAC

Attempt 2: Indistinguishable ciphertext security

ExpIND
E,A (n):

1 k ← Gen(1n)

2 m0,m1 ← A(1n) with m0,m1 ∈M∧ |m0| = |m1|
3 b ←R {0, 1}, c ← Enck(mb)

4 b′ ← A(c)

5 Output 1 if b′ = b, otherwise 0

Definition (Indistinguishable ciphertexts (IND))

A secret key encryption scheme E has indistinguishable ciphertexts
if for all efficient adversaries A their advantage ε in winning above
game is negligible

Pr
[
ExpIND

E,A (n) = 1
]

=
1

2
+ ε.

This definition is a lot easier to work with and equivalent to SEM!

12 / 50

Secret key encryption MAC

Attempt 2: Indistinguishable ciphertext security

ExpIND
E,A (n):

1 k ← Gen(1n)

2 m0,m1 ← A(1n) with m0,m1 ∈M∧ |m0| = |m1|
3 b ←R {0, 1}, c ← Enck(mb)

4 b′ ← A(c)

5 Output 1 if b′ = b, otherwise 0

Definition (Indistinguishable ciphertexts (IND))

A secret key encryption scheme E has indistinguishable ciphertexts
if for all efficient adversaries A their advantage ε in winning above
game is negligible

Pr
[
ExpIND

E,A (n) = 1
]

=
1

2
+ ε.

This definition is a lot easier to work with and equivalent to SEM!
12 / 50

Secret key encryption MAC

Is IND efficiently achievable?

We first need tooling.

Definition (Pseudorandom generator (PRG))

Let ` be a polynomial and let G be a deterministic, efficient
algorithm that implements a function G : {0, 1}n → {0, 1}`(n). We
say G is a secure PRG if the following two conditions hold:

1 Expansion: For every n it holds that `(n) > n.

2 Pseudorandomness: For all efficient distinguishers D the
advantage ε distinguishing outputs of G from random is
negligible, where

ε =

∣∣∣∣ Pr
r←R{0,1}`(n)

[D(r) = 1]− Pr
s←R{0,1}n

[D(G(s)) = 1]

∣∣∣∣ .

PRG’s exist if one-way functions exist. Will see examples
later.

13 / 50

Secret key encryption MAC

Is IND efficiently achievable?

We first need tooling.

Definition (Pseudorandom generator (PRG))

Let ` be a polynomial and let G be a deterministic, efficient
algorithm that implements a function G : {0, 1}n → {0, 1}`(n). We
say G is a secure PRG if the following two conditions hold:

1 Expansion: For every n it holds that `(n) > n.

2 Pseudorandomness: For all efficient distinguishers D the
advantage ε distinguishing outputs of G from random is
negligible, where

ε =

∣∣∣∣ Pr
r←R{0,1}`(n)

[D(r) = 1]− Pr
s←R{0,1}n

[D(G(s)) = 1]

∣∣∣∣ .

PRG’s exist if one-way functions exist. Will see examples
later.

13 / 50

Secret key encryption MAC

Is IND efficiently achievable?

We first need tooling.

Definition (Pseudorandom generator (PRG))

Let ` be a polynomial and let G be a deterministic, efficient
algorithm that implements a function G : {0, 1}n → {0, 1}`(n). We
say G is a secure PRG if the following two conditions hold:

1 Expansion: For every n it holds that `(n) > n.

2 Pseudorandomness: For all efficient distinguishers D the
advantage ε distinguishing outputs of G from random is
negligible, where

ε =

∣∣∣∣ Pr
r←R{0,1}`(n)

[D(r) = 1]− Pr
s←R{0,1}n

[D(G(s)) = 1]

∣∣∣∣ .

PRG’s exist if one-way functions exist. Will see examples
later.

13 / 50

Secret key encryption MAC

Is IND efficiently achievable?

We first need tooling.

Definition (Pseudorandom generator (PRG))

Let ` be a polynomial and let G be a deterministic, efficient
algorithm that implements a function G : {0, 1}n → {0, 1}`(n). We
say G is a secure PRG if the following two conditions hold:

1 Expansion: For every n it holds that `(n) > n.

2 Pseudorandomness: For all efficient distinguishers D the
advantage ε distinguishing outputs of G from random is
negligible, where

ε =

∣∣∣∣ Pr
r←R{0,1}`(n)

[D(r) = 1]− Pr
s←R{0,1}n

[D(G(s)) = 1]

∣∣∣∣ .

PRG’s exist if one-way functions exist. Will see examples
later. 13 / 50

Secret key encryption MAC

Is IND efficiently achievable?

Construction (PRG-ENC)

Let n ∈ N be the security parameter, let M = {0, 1}`(n)(= C), and
let G be a PRG as defined above. The PRG-ENC encryption
scheme consists of the following three algorithms:

Gen(1n): Return k ←R {0, 1}n.

Enck(m): Return c = m ⊕ G(k).

Deck(c): Return m′ = c ⊕ G(k).

Correctness

Deck(Enck(m)) = (m ⊕ G(k))⊕ G(k) = m

14 / 50

Secret key encryption MAC

Is IND efficiently achievable?

Construction (PRG-ENC)

Let n ∈ N be the security parameter, let M = {0, 1}`(n)(= C), and
let G be a PRG as defined above. The PRG-ENC encryption
scheme consists of the following three algorithms:

Gen(1n): Return k ←R {0, 1}n.

Enck(m): Return c = m ⊕ G(k).

Deck(c): Return m′ = c ⊕ G(k).

Correctness

Deck(Enck(m)) = (m ⊕ G(k))⊕ G(k) = m

14 / 50

Secret key encryption MAC

PRG-ENC is IND secure

Proof by reduction. If there exists A that can distinguish
ciphertexts of PRG-ENC in time t with advantage ε then the
following algorithm D runs in time ≈ t and succeeds in
distinguishing G with advantage ε′ = ε.

Construction (Distinguisher D)

Given as input a string w ∈ {0, 1}`(n):
1 Run m0,m1 ← A(1n)

2 Set b ←R {0, 1}, c = mb ⊕ w

3 Run b′ ← A(c)

4 Return 1 if b = b′, otherwise 0.

15 / 50

Secret key encryption MAC

PRG-ENC is IND secure

Proof by reduction. If there exists A that can distinguish
ciphertexts of PRG-ENC in time t with advantage ε then the
following algorithm D runs in time ≈ t and succeeds in
distinguishing G with advantage ε′ = ε.

Construction (Distinguisher D)

Given as input a string w ∈ {0, 1}`(n):
1 Run m0,m1 ← A(1n)

2 Set b ←R {0, 1}, c = mb ⊕ w

3 Run b′ ← A(c)

4 Return 1 if b = b′, otherwise 0.

15 / 50

Secret key encryption MAC

Advantage of D

Construction (Distinguisher D)

Given as input a string w ∈ {0, 1}`(n):
1 Run m0,m1 ← A(1n)

2 Set b ←R {0, 1}, c = mb ⊕ w

3 Run b′ ← A(c)

4 Return 1 if b = b′, otherwise 0.

ε′ = |Pr [D(r) = 1]− Pr [D(G(s)) = 1]|

Pr [D(r) = 1] = Pr
[
ExpIND

OTP,A (n) = 1
]

=
1

2

Pr [D(G(s)) = 1] = Pr
[
ExpIND

PRG−ENC,A (n) = 1
]

=
1

2
+ ε

ε′ =

∣∣∣∣12 −
(

1

2
+ ε

)∣∣∣∣ = ε

16 / 50

Secret key encryption MAC

Advantage of D

Construction (Distinguisher D)

Given as input a string w ∈ {0, 1}`(n):
1 Run m0,m1 ← A(1n)

2 Set b ←R {0, 1}, c = mb ⊕ w

3 Run b′ ← A(c)

4 Return 1 if b = b′, otherwise 0.

ε′ = |Pr [D(r) = 1]− Pr [D(G(s)) = 1]|

Pr [D(r) = 1] = Pr
[
ExpIND

OTP,A (n) = 1
]

=
1

2

Pr [D(G(s)) = 1] = Pr
[
ExpIND

PRG−ENC,A (n) = 1
]

=
1

2
+ ε

ε′ =

∣∣∣∣12 −
(

1

2
+ ε

)∣∣∣∣ = ε

16 / 50

Secret key encryption MAC

Advantage of D

Construction (Distinguisher D)

Given as input a string w ∈ {0, 1}`(n):
1 Run m0,m1 ← A(1n)

2 Set b ←R {0, 1}, c = mb ⊕ w

3 Run b′ ← A(c)

4 Return 1 if b = b′, otherwise 0.

ε′ = |Pr [D(r) = 1]− Pr [D(G(s)) = 1]|

Pr [D(r) = 1] = Pr
[
ExpIND

OTP,A (n) = 1
]

=
1

2

Pr [D(G(s)) = 1] = Pr
[
ExpIND

PRG−ENC,A (n) = 1
]

=
1

2
+ ε

ε′ =

∣∣∣∣12 −
(

1

2
+ ε

)∣∣∣∣ = ε

16 / 50

Secret key encryption MAC

Advantage of D

Construction (Distinguisher D)

Given as input a string w ∈ {0, 1}`(n):
1 Run m0,m1 ← A(1n)

2 Set b ←R {0, 1}, c = mb ⊕ w

3 Run b′ ← A(c)

4 Return 1 if b = b′, otherwise 0.

ε′ = |Pr [D(r) = 1]− Pr [D(G(s)) = 1]|

Pr [D(r) = 1] = Pr
[
ExpIND

OTP,A (n) = 1
]

=
1

2

Pr [D(G(s)) = 1] = Pr
[
ExpIND

PRG−ENC,A (n) = 1
]

=
1

2
+ ε

ε′ =

∣∣∣∣12 −
(

1

2
+ ε

)∣∣∣∣ = ε
16 / 50

Secret key encryption MAC

PRG-ENC is IND secure

Theorem

If there exists A that can distinguish ciphertexts of PRG-ENC in
time t with advantage ε then the algorithm D from above runs in
time ≈ t and succeeds in breaking G with advantage ε′ = ε.
Hence, if G is a secure PRG, then PRG-ENC has indistinguishable
ciphertexts.

17 / 50

Secret key encryption MAC

What did we achieve?

SEM, IND, and perfect secrecy define A’s goal

What about A’s attack capabilities?

In this sense they are unrealistic single message notions.

18 / 50

Secret key encryption MAC

What did we achieve?

SEM, IND, and perfect secrecy define A’s goal

What about A’s attack capabilities?

In this sense they are unrealistic single message notions.

18 / 50

Secret key encryption MAC

What did we achieve?

SEM, IND, and perfect secrecy define A’s goal

What about A’s attack capabilities?

In this sense they are unrealistic single message notions.

18 / 50

Secret key encryption MAC

Is this realistic?

19 / 50

Secret key encryption MAC

Or rather this.

20 / 50

Secret key encryption MAC

What can A learn?

Often messages follow known format (MIME, HTML,
XML,. . .).

Often parts of messages are guessable:

“To whom it may concern,”
“Dear [Recipient],”
“Best regards, \n [Sender]”
“Cheers, \n [Sender]”

Want to model the worst case: Let A choose messages that
get encrypted!

21 / 50

Secret key encryption MAC

What can A learn?

Often messages follow known format (MIME, HTML,
XML,. . .).

Often parts of messages are guessable:

“To whom it may concern,”
“Dear [Recipient],”
“Best regards, \n [Sender]”
“Cheers, \n [Sender]”

Want to model the worst case: Let A choose messages that
get encrypted!

21 / 50

Secret key encryption MAC

What can A learn?

Often messages follow known format (MIME, HTML,
XML,. . .).

Often parts of messages are guessable:

“To whom it may concern,”
“Dear [Recipient],”
“Best regards, \n [Sender]”
“Cheers, \n [Sender]”

Want to model the worst case: Let A choose messages that
get encrypted!

21 / 50

Secret key encryption MAC

IND under chosen plaintext attacks (IND-CPA)

22 / 50

Secret key encryption MAC

IND under chosen plaintext attacks (IND-CPA).

ExpIND−CPA
E,A (n):

1 k ← Gen(1n)

2 m0,m1 ← AEnck (·)(1n) with m0,m1 ∈M∧ |m0| = |m1|
3 b ←R {0, 1}, c ← Enck(mb)

4 b′ ← AEnck (·)(c)

5 Output 1 if b′ = b, otherwise 0

Definition (IND-CPA)

A secret key encryption scheme E has indistinguishable ciphertexts
under chosen plaintext attacks if for all efficient adversaries A their
advantage ε in winning above game is negligible

Pr
[
ExpIND−CPA

E,A (n) = 1
]
≤ 1

2
+ ε.

Note: This definition is equivalent to SEM-CPA.

23 / 50

Secret key encryption MAC

IND under chosen plaintext attacks (IND-CPA).

ExpIND−CPA
E,A (n):

1 k ← Gen(1n)

2 m0,m1 ← AEnck (·)(1n) with m0,m1 ∈M∧ |m0| = |m1|
3 b ←R {0, 1}, c ← Enck(mb)

4 b′ ← AEnck (·)(c)

5 Output 1 if b′ = b, otherwise 0

Definition (IND-CPA)

A secret key encryption scheme E has indistinguishable ciphertexts
under chosen plaintext attacks if for all efficient adversaries A their
advantage ε in winning above game is negligible

Pr
[
ExpIND−CPA

E,A (n) = 1
]
≤ 1

2
+ ε.

Note: This definition is equivalent to SEM-CPA.

23 / 50

Secret key encryption MAC

IND under chosen plaintext attacks (IND-CPA).

ExpIND−CPA
E,A (n):

1 k ← Gen(1n)

2 m0,m1 ← AEnck (·)(1n) with m0,m1 ∈M∧ |m0| = |m1|
3 b ←R {0, 1}, c ← Enck(mb)

4 b′ ← AEnck (·)(c)

5 Output 1 if b′ = b, otherwise 0

Definition (IND-CPA)

A secret key encryption scheme E has indistinguishable ciphertexts
under chosen plaintext attacks if for all efficient adversaries A their
advantage ε in winning above game is negligible

Pr
[
ExpIND−CPA

E,A (n) = 1
]
≤ 1

2
+ ε.

Note: This definition is equivalent to SEM-CPA.
23 / 50

Secret key encryption MAC

IND-CPA secure SKE

Is the one-time pad IND-CPA-secure?

What about PRG-ENC?

Theorem

A deterministic encryption scheme cannot be IND-CPA secure.

Proof idea.

Send m0 to Enck(·) and compare result with challenge
ciphertext.

24 / 50

Secret key encryption MAC

IND-CPA secure SKE

Is the one-time pad IND-CPA-secure?

What about PRG-ENC?

Theorem

A deterministic encryption scheme cannot be IND-CPA secure.

Proof idea.

Send m0 to Enck(·) and compare result with challenge
ciphertext.

24 / 50

Secret key encryption MAC

IND-CPA secure SKE

Is the one-time pad IND-CPA-secure?

What about PRG-ENC?

Theorem

A deterministic encryption scheme cannot be IND-CPA secure.

Proof idea.

Send m0 to Enck(·) and compare result with challenge
ciphertext.

24 / 50

Secret key encryption MAC

IND-CPA secure SKE

Is the one-time pad IND-CPA-secure?

What about PRG-ENC?

Theorem

A deterministic encryption scheme cannot be IND-CPA secure.

Proof idea.

Send m0 to Enck(·) and compare result with challenge
ciphertext.

24 / 50

Secret key encryption MAC

Pseudorandom function families

A keyed function is a two input function F : K×X → Y where the
first input is called the key and denoted k . We will write

Fk(x)
def
= F(k, x).

Definition (Pseudorandom function family (PRF))

Let F : {0, 1}n × {0, 1}n → {0, 1}n be an efficient,
length-preserving, keyed function. We say F is a pseudorandom
function if for all efficient distinguishers D the distinguishing
advantage ε is negligible, where

ε =

∣∣∣∣ Pr
k←R{0,1}n

[
DFk (·)(1n) = 1

]
− Pr

fn←RFUNCn

[
Dfn(·)(1n) = 1

]∣∣∣∣ .
PRF’s exist if PRG’s exist [GGM’84]. For length doubling PRG G
define

Fk(x)
def
= G

(
. . .G (G(k)x1)x2 . . .

)
xn
.

25 / 50

Secret key encryption MAC

Pseudorandom function families

A keyed function is a two input function F : K×X → Y where the
first input is called the key and denoted k . We will write

Fk(x)
def
= F(k, x).

Definition (Pseudorandom function family (PRF))

Let F : {0, 1}n × {0, 1}n → {0, 1}n be an efficient,
length-preserving, keyed function. We say F is a pseudorandom
function if for all efficient distinguishers D the distinguishing
advantage ε is negligible, where

ε =

∣∣∣∣ Pr
k←R{0,1}n

[
DFk (·)(1n) = 1

]
− Pr

fn←RFUNCn

[
Dfn(·)(1n) = 1

]∣∣∣∣ .

PRF’s exist if PRG’s exist [GGM’84]. For length doubling PRG G
define

Fk(x)
def
= G

(
. . .G (G(k)x1)x2 . . .

)
xn
.

25 / 50

Secret key encryption MAC

Pseudorandom function families

A keyed function is a two input function F : K×X → Y where the
first input is called the key and denoted k . We will write

Fk(x)
def
= F(k, x).

Definition (Pseudorandom function family (PRF))

Let F : {0, 1}n × {0, 1}n → {0, 1}n be an efficient,
length-preserving, keyed function. We say F is a pseudorandom
function if for all efficient distinguishers D the distinguishing
advantage ε is negligible, where

ε =

∣∣∣∣ Pr
k←R{0,1}n

[
DFk (·)(1n) = 1

]
− Pr

fn←RFUNCn

[
Dfn(·)(1n) = 1

]∣∣∣∣ .
PRF’s exist if PRG’s exist [GGM’84]. For length doubling PRG G
define

Fk(x)
def
= G

(
. . .G (G(k)x1)x2 . . .

)
xn
.

25 / 50

Secret key encryption MAC

Pseudorandom permutation families

Formal model for block ciphers is PRP.

Definition (Pseudorandom permutation family (PRP))

Let n ∈ N be the security parameter,
F : {0, 1}n × {0, 1}n → {0, 1}n be an efficient, length-preserving,
keyed permutation. We say F is a family of pseudorandom
permutations (PRP) if for all efficient distinguishers D the
distinguishing advantage ε is negligible, where

ε =

∣∣∣∣ Pr
k←R{0,1}n

[
DFk (·),F−1

k (·)(1n) = 1
]

− Pr
fn←RPermn

[
Dfn(·),f −1

n (·)(1n) = 1
]∣∣∣∣ ,

where Permn denotes the set of all permutations over {0, 1}n.

A PRP is a PRF (Switching-Lemma) but not vice-versa.
26 / 50

Secret key encryption MAC

IND-CPA-secure SKE

Construction (PRF-ENC)

Let n ∈ N be the security parameter, let M = {0, 1}n(= C = K),
and let F be a length-preserving PRF as defined above. The
PRF-ENC encryption scheme consists of the following three
algorithms:

Gen(1n): Return k ←R {0, 1}n.

Enck(m): Sample r ←R {0, 1}n, compute c̄ = m ⊕ Fk(r), and
return c = 〈r , c̄〉.

Deck(c): Parse c as 〈r , c̄〉. Return m′ = c̄ ⊕ Fk(r).

Correctness

Deck(Enck(m)) = (m ⊕ Fk(r))⊕ Fk(r) = m

27 / 50

Secret key encryption MAC

IND-CPA-secure SKE

Construction (PRF-ENC)

Let n ∈ N be the security parameter, let M = {0, 1}n(= C = K),
and let F be a length-preserving PRF as defined above. The
PRF-ENC encryption scheme consists of the following three
algorithms:

Gen(1n): Return k ←R {0, 1}n.

Enck(m): Sample r ←R {0, 1}n, compute c̄ = m ⊕ Fk(r), and
return c = 〈r , c̄〉.

Deck(c): Parse c as 〈r , c̄〉. Return m′ = c̄ ⊕ Fk(r).

Correctness

Deck(Enck(m)) = (m ⊕ Fk(r))⊕ Fk(r) = m

27 / 50

Secret key encryption MAC

PRF-ENC is IND-CPA secure

Proof idea. Similar to PRG-ENC. Given A that breaks IND-CPA
of PRF-ENC in time t, with advantage ε then the following
algorithm D runs in time ≈ t and succeeds in distinguishing F with
advantage ε′ ≈ ε.

Construction (Distinguisher D)

Given access to oracle O : {0, 1}n → {0, 1}n:

1 Run m0,m1 ← AEnc′(·)(1n)

2 Set b ←R {0, 1}, r∗ ←R {0, 1}n, c̄∗ = mb ⊕O(r∗)

3 Run b′ ← AEnc′(·)(〈r∗, c̄∗〉)
4 Return 1 if b = b′, otherwise 0

where Enc′(·) computes r ←R {0, 1}n, c̄ = mb ⊕O(r) and returns
〈r , c̄〉.

28 / 50

Secret key encryption MAC

PRF-ENC is IND-CPA secure

Proof idea. Similar to PRG-ENC. Given A that breaks IND-CPA
of PRF-ENC in time t, with advantage ε then the following
algorithm D runs in time ≈ t and succeeds in distinguishing F with
advantage ε′ ≈ ε.

Construction (Distinguisher D)

Given access to oracle O : {0, 1}n → {0, 1}n:

1 Run m0,m1 ← AEnc′(·)(1n)

2 Set b ←R {0, 1}, r∗ ←R {0, 1}n, c̄∗ = mb ⊕O(r∗)

3 Run b′ ← AEnc′(·)(〈r∗, c̄∗〉)
4 Return 1 if b = b′, otherwise 0

where Enc′(·) computes r ←R {0, 1}n, c̄ = mb ⊕O(r) and returns
〈r , c̄〉.

28 / 50

Secret key encryption MAC

Advantage of D

Construction (Distinguisher D)

Given access to oracle O : {0, 1}n → {0, 1}n:

2 Set b ←R {0, 1}, r∗ ←R {0, 1}n, c̄∗ = mb ⊕O(r∗)

where Enc′(·) computes r ←R {0, 1}n, c̄ = mb ⊕O(r) and returns
〈r , c̄〉.

ε′ =

∣∣∣∣ Pr
k←R{0,1}n

[
DFk (·)(1n) = 1

]
− Pr

fn←RFUNCn

[
Dfn(·)(1n) = 1

]∣∣∣∣

=

∣∣∣∣Pr
[
ExpIND−CPA

PRF−ENC,A (n) = 1
]
− Pr

[
ExpIND−CPA

˜PRF−ENC,A
(n) = 1

]∣∣∣∣
=

∣∣∣∣12 + ε−
(

1

2
+

q

2n

)∣∣∣∣ =
∣∣∣ε− q

2n

∣∣∣

29 / 50

Secret key encryption MAC

Advantage of D

Construction (Distinguisher D)

Given access to oracle O : {0, 1}n → {0, 1}n:

2 Set b ←R {0, 1}, r∗ ←R {0, 1}n, c̄∗ = mb ⊕O(r∗)

where Enc′(·) computes r ←R {0, 1}n, c̄ = mb ⊕O(r) and returns
〈r , c̄〉.

ε′ =

∣∣∣∣ Pr
k←R{0,1}n

[
DFk (·)(1n) = 1

]
− Pr

fn←RFUNCn

[
Dfn(·)(1n) = 1

]∣∣∣∣
=

∣∣∣∣Pr
[
ExpIND−CPA

PRF−ENC,A (n) = 1
]
− Pr

[
ExpIND−CPA

˜PRF−ENC,A
(n) = 1

]∣∣∣∣

=

∣∣∣∣12 + ε−
(

1

2
+

q

2n

)∣∣∣∣ =
∣∣∣ε− q

2n

∣∣∣

29 / 50

Secret key encryption MAC

Advantage of D

Construction (Distinguisher D)

Given access to oracle O : {0, 1}n → {0, 1}n:

2 Set b ←R {0, 1}, r∗ ←R {0, 1}n, c̄∗ = mb ⊕O(r∗)

where Enc′(·) computes r ←R {0, 1}n, c̄ = mb ⊕O(r) and returns
〈r , c̄〉.

ε′ =

∣∣∣∣ Pr
k←R{0,1}n

[
DFk (·)(1n) = 1

]
− Pr

fn←RFUNCn

[
Dfn(·)(1n) = 1

]∣∣∣∣
=

∣∣∣∣Pr
[
ExpIND−CPA

PRF−ENC,A (n) = 1
]
− Pr

[
ExpIND−CPA

˜PRF−ENC,A
(n) = 1

]∣∣∣∣
=

∣∣∣∣12 + ε−
(

1

2
+

q

2n

)∣∣∣∣ =
∣∣∣ε− q

2n

∣∣∣
29 / 50

Secret key encryption MAC

PRF-ENC is IND-CPA secure

Theorem

If there exists A that can distinguish ciphertexts of PRF-ENC
during a CPA-experiment in time t with advantage ε then the
algorithm D from above runs in time ≈ t and succeeds in breaking
F with advantage ε′ ≥ ε− q/2n.
Hence, if F is a secure PRF, then PRF-ENC has indistinguishable
ciphertexts under chosen plaintext attacks.

30 / 50

Secret key encryption MAC

Arbitrary length messages

PRF-ENC only works for n-bit messages.

Can repeat fixed-length scheme:
For `n-bit message m = (m1‖m2‖ . . . ‖m`) ciphertext is

c = 〈r1,Fk(r1)⊕m1, r2,Fk(r2)⊕m2, . . . , r`,Fk(r`)⊕m`〉

Pretty inefficient!

Solution: Modes of operation

31 / 50

Secret key encryption MAC

Arbitrary length messages

PRF-ENC only works for n-bit messages.

Can repeat fixed-length scheme:
For `n-bit message m = (m1‖m2‖ . . . ‖m`) ciphertext is

c = 〈r1,Fk(r1)⊕m1, r2,Fk(r2)⊕m2, . . . , r`,Fk(r`)⊕m`〉

Pretty inefficient!

Solution: Modes of operation

31 / 50

Secret key encryption MAC

Arbitrary length messages

PRF-ENC only works for n-bit messages.

Can repeat fixed-length scheme:
For `n-bit message m = (m1‖m2‖ . . . ‖m`) ciphertext is

c = 〈r1,Fk(r1)⊕m1, r2,Fk(r2)⊕m2, . . . , r`,Fk(r`)⊕m`〉

Pretty inefficient!

Solution: Modes of operation

31 / 50

Secret key encryption MAC

Electronic code book mode (ECB)

Deterministic! Even worse, not even IND for single message
attacks!
(Consider m0 = m‖m;m1 = m‖m′ for m,m′ ∈ {0, 1}n)

32 / 50

Secret key encryption MAC

Electronic code book mode (ECB)

Deterministic! Even worse, not even IND for single message
attacks!
(Consider m0 = m‖m;m1 = m‖m′ for m,m′ ∈ {0, 1}n)

32 / 50

Secret key encryption MAC

Cipher block chaining mode (CBC)

IND-CPA if F is a PRP. IV has to be random, if it is predictable
CBC is vulnerable!

33 / 50

Secret key encryption MAC

Cipher block chaining mode (CBC)

IND-CPA if F is a PRP. IV has to be random, if it is predictable
CBC is vulnerable!

33 / 50

Secret key encryption MAC

Counter mode (CTR)

IND-CPA if F is a PRF.

34 / 50

Secret key encryption MAC

Counter mode (CTR)

IND-CPA if F is a PRF.

34 / 50

Secret key encryption MAC

What about active attacks?

A might be able to learn decryption of ciphertexts at a later
point by compromising the system.

A might even get access to a decryption oracle (lunch time
attack).

Want to model the worst case: Let A choose ciphertexts that
get decrypted!

35 / 50

Secret key encryption MAC

What about active attacks?

A might be able to learn decryption of ciphertexts at a later
point by compromising the system.

A might even get access to a decryption oracle (lunch time
attack).

Want to model the worst case: Let A choose ciphertexts that
get decrypted!

35 / 50

Secret key encryption MAC

What about active attacks?

A might be able to learn decryption of ciphertexts at a later
point by compromising the system.

A might even get access to a decryption oracle (lunch time
attack).

Want to model the worst case: Let A choose ciphertexts that
get decrypted!

35 / 50

Secret key encryption MAC

IND under chosen ciphertext attacks

ExpIND−CCA
E,A (n):

1 k ← Gen(1n)

2 m0,m1 ← AEnck (·),Deck (·)(1n) with m0,m1 ∈M∧ |m0 = m1|
3 b ←R {0, 1}, c∗ ← Enck(mb)

4 b′ ← AEnck (·),Deck (·)(c∗) with Deck(c∗) = ⊥
5 Output 1 if b′ = b, otherwise 0

Definition (IND-CCA)

A secret key encryption scheme E has indistinguishable ciphertexts
under chosen ciphertext attacks if for all efficient adversaries A
their advantage ε in winning above game is negligible

Pr
[
ExpIND−CCA

E,A (n) = 1
]
≤ 1

2
+ ε.

This definition is equivalent to SEM-CCA.

36 / 50

Secret key encryption MAC

IND under chosen ciphertext attacks

ExpIND−CCA
E,A (n):

1 k ← Gen(1n)

2 m0,m1 ← AEnck (·),Deck (·)(1n) with m0,m1 ∈M∧ |m0 = m1|
3 b ←R {0, 1}, c∗ ← Enck(mb)

4 b′ ← AEnck (·),Deck (·)(c∗) with Deck(c∗) = ⊥
5 Output 1 if b′ = b, otherwise 0

Definition (IND-CCA)

A secret key encryption scheme E has indistinguishable ciphertexts
under chosen ciphertext attacks if for all efficient adversaries A
their advantage ε in winning above game is negligible

Pr
[
ExpIND−CCA

E,A (n) = 1
]
≤ 1

2
+ ε.

This definition is equivalent to SEM-CCA.

36 / 50

Secret key encryption MAC

IND under chosen ciphertext attacks

ExpIND−CCA
E,A (n):

1 k ← Gen(1n)

2 m0,m1 ← AEnck (·),Deck (·)(1n) with m0,m1 ∈M∧ |m0 = m1|
3 b ←R {0, 1}, c∗ ← Enck(mb)

4 b′ ← AEnck (·),Deck (·)(c∗) with Deck(c∗) = ⊥
5 Output 1 if b′ = b, otherwise 0

Definition (IND-CCA)

A secret key encryption scheme E has indistinguishable ciphertexts
under chosen ciphertext attacks if for all efficient adversaries A
their advantage ε in winning above game is negligible

Pr
[
ExpIND−CCA

E,A (n) = 1
]
≤ 1

2
+ ε.

This definition is equivalent to SEM-CCA.
36 / 50

Secret key encryption MAC

MAC

37 / 50

Secret key encryption MAC

Message authentication

Sometimes we want more than secrecy!

Acknowledgement of receipt, social communication, source of
executable, . . .

We need integrity and authenticity!

Encryption
?⇒ Authenticity / integrity?

PRG-ENC, PRF-ENC, ... any stream cipher allows controlled
bit-flips. If format is known this may be disastrous
Block ciphers make similar attacks harder but no guarantees.
ECB-mode allows to switch order of blocks, repeat blocks, etc.

38 / 50

Secret key encryption MAC

Message authentication

Sometimes we want more than secrecy!

Acknowledgement of receipt, social communication, source of
executable, . . .

We need integrity and authenticity!

Encryption
?⇒ Authenticity / integrity?

PRG-ENC, PRF-ENC, ... any stream cipher allows controlled
bit-flips. If format is known this may be disastrous
Block ciphers make similar attacks harder but no guarantees.
ECB-mode allows to switch order of blocks, repeat blocks, etc.

38 / 50

Secret key encryption MAC

Message authentication

Sometimes we want more than secrecy!

Acknowledgement of receipt, social communication, source of
executable, . . .

We need integrity and authenticity!

Encryption
?⇒ Authenticity / integrity?

PRG-ENC, PRF-ENC, ... any stream cipher allows controlled
bit-flips. If format is known this may be disastrous
Block ciphers make similar attacks harder but no guarantees.
ECB-mode allows to switch order of blocks, repeat blocks, etc.

38 / 50

Secret key encryption MAC

Message authentication

Sometimes we want more than secrecy!

Acknowledgement of receipt, social communication, source of
executable, . . .

We need integrity and authenticity!

Encryption
?⇒ Authenticity / integrity?

PRG-ENC, PRF-ENC, ... any stream cipher allows controlled
bit-flips. If format is known this may be disastrous
Block ciphers make similar attacks harder but no guarantees.
ECB-mode allows to switch order of blocks, repeat blocks, etc.

38 / 50

Secret key encryption MAC

MAC

39 / 50

Secret key encryption MAC

Message authentication codes (MAC)

Definition (message authentication code)

A message authentication code or MAC is a tuple of probabilistic
polynomial-time algorithms MAC = (Gen,Mac,Vrfy) over a
message space M, fulfilling the following:

Gen is a probabilistic algorithm that on input 1n outputs a
key k . The output space of Gen is called the key
space K.

Mac takes as input a key k ∈ K and a message m ∈M,
and outputs a tag t ∈ T . The output space of Mac
is called tag space T .

Vrfy is a deterministic algorithm that takes as inputs a key
k ∈ K, a message m ∈M, and a tag t ∈ T , and
outputs a bit b ∈ {0, 1}.

Correctness: For every n, every k ← Gen(1n), and every m ∈M
it holds that Vrfyk(m,Mack(m)) = 1.

40 / 50

Secret key encryption MAC

Existential unforgeability under (adaptive) chosen message
attacks (EU-CMA)

41 / 50

Secret key encryption MAC

Existential unforgeability under (adaptive) chosen message
attacks (EU-CMA)

ExpEU−CMA
MAC,A (n)

1 k ← Gen(1n)

2 (m, t)← AMack (·)(1n). Let {mi}q1 denote A’s queries to
Mack

3 If Vrfyk(m, t) := 1 and m 6∈ {mi}q1 return 1

4 Else return 0.

42 / 50

Secret key encryption MAC

Existential unforgeability under (adaptive) chosen message
attacks (EU-CMA)

Definition (EU-CMA)

A message authentication code MAC = (Gen,Mac,Vrfy) over a
message space M is existentially unforgeable under an adaptive
chosen-message attack, or just secure, if for all efficient adversaries
A the success probability ε in winning ExpEU−CMA

MAC,A (n) is
negligible, where

ε = Pr
[
ExpEU−CMA

MAC,A (n) = 1
]

43 / 50

Secret key encryption MAC

Remarks

There exists a constant time attack with success probability
1/|T | against every MAC ⇒ Tags must not be too short

MAC’s do not prevent replay attacks!

Replay attacks have to be handled on protocol level (e.g.,
using sequence numbers).

44 / 50

Secret key encryption MAC

Remarks

There exists a constant time attack with success probability
1/|T | against every MAC ⇒ Tags must not be too short

MAC’s do not prevent replay attacks!

Replay attacks have to be handled on protocol level (e.g.,
using sequence numbers).

44 / 50

Secret key encryption MAC

PRF is a MAC

Theorem

A secure PRF F leads a secure MAC with

Gen(1n) returns k ←R {0, 1}n.

Mack(m) returns t = Fk(m).

Vrfyk(m, t) returns 1 if t = Fk(m), and 0 otherwise.

Proof idea

Build distinguisher that simulates experiment using its oracle
instead of F. A valid forgery must be on a new message. So if
oracle is random, tag is a correct guess for a random function at
some point m that was not queried. If A succeeds more often when
the oracle was F, this allows to distinguish F as for PRF-ENC.

45 / 50

Secret key encryption MAC

CBC-MAC

Construction

Let F be an efficient, length-preserving keyed function over {0, 1}n.
CBC-MAC has message space M = ({0, 1}`n). The algorithms are
as follows:

Gen(1n) returns k ←R {0, 1}n.

Mack(m) upon input key k ∈ {0, 1}n and a message m of
length `n, do the following:

1 Denote m = m1, . . . ,m` where each mi is of
length n, and set t0 = 0n.

2 For i = 1 to `, set ti ← Fk(ti−1 ⊕mi).
3 Output t`.

Vrfyk(m, t) returns 1 if t = Mack(m), and 0 otherwise.

46 / 50

Secret key encryption MAC

Variable message length CBC-MAC

CBC-MAC is not secure for variable length messages

Solutions for variable `:

Derived key: Compute k ′ = Fk(`) and use k ′ to compute
t = Mack ′(m)

Prepend length: Compute t = Mack(`‖m).

Encrypted tag: Use two keys k1, k2 ∈ {0, 1}n, compute
t ′ = Mack1(m) and output t = Fk2(t ′). We can generate
k1, k2 from a single key using F as a length-doubling PRG
(< k1, k2 >=< Fk(0),Fk(1) >)

47 / 50

Secret key encryption MAC

Variable message length CBC-MAC

CBC-MAC is not secure for variable length messages

Solutions for variable `:

Derived key: Compute k ′ = Fk(`) and use k ′ to compute
t = Mack ′(m)

Prepend length: Compute t = Mack(`‖m).

Encrypted tag: Use two keys k1, k2 ∈ {0, 1}n, compute
t ′ = Mack1(m) and output t = Fk2(t ′). We can generate
k1, k2 from a single key using F as a length-doubling PRG
(< k1, k2 >=< Fk(0),Fk(1) >)

47 / 50

Secret key encryption MAC

Padding

What if the message length is not a multiple of the block
length: |m| 6= x · n?

Solution: Padding

Expand message to match multiple of block length.

Usually injective function Pad : {0, 1}∗ → ({0, 1}n)∗.

E.g., m→ m‖10∗.

Properties depend on cryptographic application:

Encryption - invertible
MAC - injective

Often used for additional purposes: Randomization, or
encoding message length.

48 / 50

Secret key encryption MAC

Padding

What if the message length is not a multiple of the block
length: |m| 6= x · n?

Solution: Padding

Expand message to match multiple of block length.

Usually injective function Pad : {0, 1}∗ → ({0, 1}n)∗.

E.g., m→ m‖10∗.

Properties depend on cryptographic application:

Encryption - invertible
MAC - injective

Often used for additional purposes: Randomization, or
encoding message length.

48 / 50

Secret key encryption MAC

Secrecy + Authenticity

We actually want IND-CCA and EU-CMA security of our
connections.

Options:

Encrypt-and-MAC: c = Enck1(m), t = Mack2(m).

MAC-then-Encrypt. t = Mack2(m), c = Enck1(m‖t).

Encrypt-then-MAC. c = Enck1(m), t = Mack2(c).

Or the most simple one: Use Authenticated encryption (AE)!

49 / 50

Secret key encryption MAC

Secrecy + Authenticity

We actually want IND-CCA and EU-CMA security of our
connections.

Options:

Encrypt-and-MAC: c = Enck1(m), t = Mack2(m).

MAC-then-Encrypt. t = Mack2(m), c = Enck1(m‖t).

Encrypt-then-MAC. c = Enck1(m), t = Mack2(c).

Or the most simple one: Use Authenticated encryption (AE)!

49 / 50

Secret key encryption MAC

Secrecy + Authenticity

We actually want IND-CCA and EU-CMA security of our
connections.

Options:

Encrypt-and-MAC: c = Enck1(m), t = Mack2(m).
Possibly insecure as MAC might leak!

MAC-then-Encrypt. t = Mack2(m), c = Enck1(m‖t).

Encrypt-then-MAC. c = Enck1(m), t = Mack2(c).

Or the most simple one: Use Authenticated encryption (AE)!

49 / 50

Secret key encryption MAC

Secrecy + Authenticity

We actually want IND-CCA and EU-CMA security of our
connections.

Options:

Encrypt-and-MAC: c = Enck1(m), t = Mack2(m).
Possibly insecure as MAC might leak!

MAC-then-Encrypt. t = Mack2(m), c = Enck1(m‖t).
Possibly insecure but counter-examples are more involved

Encrypt-then-MAC. c = Enck1(m), t = Mack2(c).

Or the most simple one: Use Authenticated encryption (AE)!

49 / 50

Secret key encryption MAC

Secrecy + Authenticity

We actually want IND-CCA and EU-CMA security of our
connections.

Options:

Encrypt-and-MAC: c = Enck1(m), t = Mack2(m).
Possibly insecure as MAC might leak!

MAC-then-Encrypt. t = Mack2(m), c = Enck1(m‖t).
Possibly insecure but counter-examples are more involved

Encrypt-then-MAC. c = Enck1(m), t = Mack2(c).
Secure! (And the generic way to turn an IND-CPA secure
encryption into an IND-CCA secure one.)

Or the most simple one: Use Authenticated encryption (AE)!

49 / 50

Secret key encryption MAC

Secrecy + Authenticity

We actually want IND-CCA and EU-CMA security of our
connections.

Options:

Encrypt-and-MAC: c = Enck1(m), t = Mack2(m).
Possibly insecure as MAC might leak!

MAC-then-Encrypt. t = Mack2(m), c = Enck1(m‖t).
Possibly insecure but counter-examples are more involved

Encrypt-then-MAC. c = Enck1(m), t = Mack2(c).
Secure! (And the generic way to turn an IND-CPA secure
encryption into an IND-CCA secure one.)

Or the most simple one: Use Authenticated encryption (AE)!

49 / 50

Secret key encryption MAC

Conclusion

We covered secret key encryption schemes and their security.

We covered message authentication codes and their security.

On the way we looked at PRFs and PRGs.

Thank you!
Questions?

50 / 50

Secret key encryption MAC

Conclusion

We covered secret key encryption schemes and their security.

We covered message authentication codes and their security.

On the way we looked at PRFs and PRGs.

Thank you!
Questions?

50 / 50

	Secret key encryption
	MAC

