
Cryptography, homework sheet 5
Due for 2MMC10: 12 October 2017, 10:45

and for Mastermath: 23 November 2017, 10:45 by email to crypto.course@tue.nl

You may use computer algebra systems such as mathematica, gp, or sage or program in C,
Java, or Python. Please submit your code if any) as part of your homework. If you do,
make sure that your programs compile and run correctly; my students will not debug your
programs. The program should also be humanly readable.

1. 3 ∈ IF∗1013 generates a group of order 1012 = 4 · 11 · 23. Solve the discrete logarithm
problem g = 3, h = 321 by using the Pohlig-Hellman attack, i.e. find an integer 0 < a <
1012 such that h = ga by computing first a modulo 2, 4, 11, and 23 and then computing
a using the Chinese Remainder Theorem.

2. Use the schoolbook version of Pollard’s rho method to attack the discrete logarithm
problem given by g = 3, h = 245 in IF∗1013, i.e. find an integer 0 < a < 1012 such that
h = ga, using the ti and ri (the twice as fast walk) as defined in class (aand repeated
here). Let t0 = g, a0 = 1, and b0 = 0 and define

ti+1 =


ti · g
ti · h
t2i

, ai+1 =


ai + 1
ai
2ai

, bi+1 =


bi
bi + 1
2bi

for ti ≡


0 mod 3
1 mod 3
2 mod 3

,

where one takes ti as an integer. The twice as fast walk has ri = t2i.

The walk could start at any t0 = ga0hb0 for known a0 and b0 – but then the homework
would be harder to correct.

3. Use factor base F = {2, 3, 5, 7, 11, 13} to solve the DLP h = 281, g = 2, in IF∗1019.
I.e. pick random powers of g = 2, check whether they factor into products of powers
of 2,3,5,7,11, and 13; if so, add a relation to a matrix. The columns of the matrix
correspond to the discrete logs of 2,3, 5,7,11, and 13. Once you have 6 rows try to solve
the matrix; note that these computations take place modulo the group order 1018. It
might be that some of the rows are linearly dependent, in that case you need to generate
another relation. Once you have all discrete logs of the primes in the factor base, check
whether h is smooth and if not find a h/gi (for some i) which is smooth. 2,3,5,7,11,
and 13; if so, add a relation to a matrix. The columns of the matrix correspond to the
discrete logs of 2,3, 5,7,11, and 13. Once you have 6 rows try to solve the matrix; note
that these computations take place modulo the group order 1018. It might be that some
of the rows are linearly dependent, in that case you need to generate another relation.
Once you have all discrete logs of the primes in the factor base, check whether h is
smooth and if not find a h/gi (for some i) which is smooth.

E.g. 2291 ≡ 52 mod 1019; over the integers 52 = 22 · 13, so we incluclude the relation
291 ≡ 2a2 + a13 mod 1018. Note that you can run into difficulties inverting modulo
1018 since it is not prime. E.g. 2658 ≡ 729 mod 1019; over the integers 729 = 36,
so we incluclude the relation 658 ≡ 6a3 mod 1018 but 6 is not invertible modulo 1018
and we can only determine a3 ≡ 449 mod 509 and need to test whether a3 = 449 or
a3 = 449 + 509. Here 2449 ≡ 1016 mod 1019 and 2449+509 ≡ 3 mod 1019, thus a3 = 958.

Hint: if you’re using Pari-GP you’ll find

factor(lift(Mod(2^i,p)))

a usefull command.



Background information:
The Pohlig-Hellman attack attack works in any group and is a way to reduce the reduce the
hardness of the DLP to the hardness of the DLP in subgroups of prime order. In particular
you’ll see in the exercise that it works against the DLP in IF∗1013 by solving DLPs in groups
of size 2, 11, and 23. Here is the general description:
Let G be a cyclic group generated by g and let the challenge be to find logg h = a. Let the
group order n factor as n =

∏r
i=1 p

ei
i where pi 6= pj for i 6= j. Then a can be computed from

the information

a ≡ a1 mod pe11
a ≡ a2 mod pe22
a ≡ a3 mod pe33

...

a ≡ ar mod perr

by using the Chinese remainder theorem. This is because the peii are coprime and their
product is n. So, if one can find the DL modulo all peii one can compute the entire DL.
Put ni = n/peii . Since g has order n the element gi = gni has order peii . The element hi = hni

is in the subgroup generated by gi and it holds that hi = gaii , where ai ≡ a mod peii .
E.g. IF∗16 = 〈g〉 has 15 elements, so one can first solve the DLP h = ga modulo 3 and then
modulo 5. For such small numbers one can simply compute h5 and compare it to 1, g5, and g10

to find whether a is equivalent to 0, 1, or 2 modulo 3. Then one compares h3 to 1, g3, g6, g9,
and g12 to see whether a is congruent to 0, 1, 2, 3, or 4 modulo 5.
The same approach works also for IF∗17 which has 16 = 24 elements – but here one can do
much better! Write a = a0 + a12 + a22

2 + a32
3. Then h8 is either equal to 1 or to −1 = g8

depending on whether a0 is 0 or 1. Once that result is known we can compare (h/ga0)4 with
1 and −1 to find a1 etc. So we can solve a much smaller DLP. Instead of going for a modulo
peii at once we can first obtain a modulo pi, then modulo p2i , then modulo p3i , etc. till peii by
each time solving a DLP in a group of size pi.
In general, for each pi in the factorization of n one does the following:

1. Put h′ = h, ai,−1 = 0

2. for j = 0 to ei − 1

(a) put h′ = h/(gai,j−1p
j−1

) //using precomputed g−1

(b) solve the DLP of order pi for ai,j = loggn/pi (h
′)n/p

j+1
i .

and then combine the ai,j to ai =
∑ej−1

j=0 ai,jp
j
i and then those ai mod peii (using CRT) to

a mod n.
Important: the Pohlig-Hellman attack handles one prime at a time, not a prime power.
That means that your DL table has only pi elements and that you solve ei DLs in subgroups
of order pi. You can see the difference in the example with IF∗17 below. xs

Numerical examples:
IF∗11 = 〈2〉, find a so that 3 = 2a. So g = 2 and h = 3. Compute n1 = 10/2 = 5,
gn1 = 25 = −1, and hn1 = 35 = 1 to see that a ≡ 0 mod 2. Then compute n2 = 10/5 = 2,



gn2 = 22 = 4, g2n2 = 24 = 5, g3n2 = 26 = 9, and g4n2 = 28 = 3 and compare that to
hn2 = 32 = 9 to see that a ≡ 3 mod 5. These two congruences imply that k = a and indeed
g8 = h.
IF∗17 = 〈3〉, find a so that 7 = 3a. So g = 3 and h = 7. In this example we will obtain a
one bit at a time. First compare h8 = 78 = −1 to 1 and −1 to see that a ≡ 1 mod 2. Then
compute h/g = 8 and then (h/g)4 = −1, so also the next bit is 1 and we see a ≡ 3 mod 4.
Then compute h/g3 = 16 and then (h/g3)2 = 1 to see that the next bit is 0, so a ≡ 3 mod 8.
Finally, since h/g3 = 16 = −1 we see that the highest bit is 1, so a ≡ 11 mod 16 and indeed
311 = 7. This solved the DLP in IF∗17 with just 4 very easy computations and comparisons.
So computing DLs in fields IFp with p = 2r + 1 is easy.


