
Cryptology Fall 2017

Chloe Martindale
TU/e

September 28, 2017

These notes are based on notes by Tanja Lange and Ruben Niederhagen.
Following on from last weeks lecture on finite fields, we now see how to use
finite fields in cryptography.

1 Diffie-Hellman key exchange

Suppose that Alice and Bob want to compute a shared secret via the Diffie-
Hellman key exchange. They first agree (in public) on a finite field Fq = Fpr (so
Fq = Fp[x]/f(x)Fp[x] where f(x) ∈ Fp[x] is a monic irreducible polynomial of
degree r) and a primitive element g of F∗q (so F∗q = 〈g〉 = {g, . . . , gq−1}). Then

1. Alice chooses a random private key a ∈ {1, . . . , q − 1} and Bob chooses a
random private key b ∈ {1, . . . , q − 1}.

2. Alice computes her public key a′ = ga ∈ Fq and Bob computes his public
key b′ = gb ∈ Fq.

3. Alice and Bob do a key exchange, that is, Alice sends a′ to Bob and Bob
sends b′ to Alice.

4. Alice computes (b′)a = (gb)a and Bob computes (a′)b = (ga)b.

Alice and Bob now have a shared secret key gab with which they can encrypt
their messages. The safety of this protocol relies of the hardness of the discrete
logarithm problem in Fq, that is, on the hardness of computing a ∈ {1, . . . , q −
1} given ga ∈ Fq. This problem is believed to be hard for very large q, a,
and b. Even given the hardness of the discrete logarithm problem, the Diffie-
Hellman key exchange is still vulnerable to man-in-the-middle attacks, has no
authentication checks, . . .

2 ElGamal encryption

Suppose that Bob wants to encrypt a message m and send it to Alice. They can
use ElGamal encryption, which has 3 parts: setup, encryption, and decryption.
Setup:

1

1. Alice chooses a finite field Fq, a primitive element g of F∗q .

2. Alice chooses a random private a ∈ {1, . . . , q − 1} and computes h = ga.

3. Alice sends her public key (Fq, g, h) to Bob.

Encryption:

1. Bob choose a random private b ∈ {1, . . . , q − 1} and computes c1 = gb.

2. Bob computes the shared secret s = hb = (ga)b = gab.

3. Bob computes c2 = ms.

4. Bob sends the ciphertext (c1, c2) to Alice.

Decryption:

1. Alice computes the shared secret s = ca1 = (gb)a = gab.

2. Alice decrypts the ciphertext m = c2s
−1 = c2c

q−1−a
1 .

Observations. • Note that s−1 = cq−1−a1 as scq−1−a1 = gabgb(q−1−a) =
(gb)q−1 = 1.

• If m is known, the shared secret gab can be recovered from the ciphertext:
use a new b for each message!

3 ElGamal signatures

Suppose that we are given a database with a hash function H : {0, 1}∗ → Z, a
finite field Fq and a primitive element g of F∗q . We can then choose a random
private key a ∈ {1, . . . , q − 1} and create a public key ga ∈ Fq for a digital
signature. A digital signature algorithm should consist of a sign step and a
verify step:
Sign a message m:

1. Pick a random nonce (‘number that you use once’) k ∈ {1, . . . , q − 1}.

2. Compute r = gk ∈ Fq.

3. Compute s ≡ k−1(H(m)− ar) mod q − 1.

4. Publish signature (r, s).

Verify signature (r, s):

1. Check whether gH(m) = hrrs.

Note that the verification step works as

hrrs = gar(gk)s = gargH(m)−ar = gH(m).

2

Observations. 1. Suppose that for some message m, signed by (r, s), the
nonce k is discovered. Then

a ≡ H(m)− ks

r
mod q − 1,

so the secret key can be recovered!

2. Suppose that the same k is used for two separate messages m1 and m2,
giving signatures (r, s1) and (r, s2) where

si ≡ k−1(H(mi)− ar) mod q − 1.

Then

s1 − s2 ≡ k−1(H(m1 − ar)− k−1(H(m2)− ar) ≡ k−1(H(m1)−H(m2)),

hence

k ≡ H(m1)−H(m2)

s1 − s2
mod q − 1.

So k can be recovered, and the secret key is then recoverable by (1). So
never reuse your nonce!

3. The signature depends only on H(m), not on m, so in theory an attacker
could find another message m′ such that H(m) = H(m′), as the signature
for m and for m′ would be the same. In practise however this doesn’t
happen since cryptographic hash functions are designed to be ‘collision
resistant’, that is, such an m′ is unlikely to exist.

4 The Discrete Logarithm Problem

All the protocols above rely on the discrete logarithm problem being hard
enough. But how hard is the discrete logarithm problem? Let’s do a small
example.

Example. Suppose that we want to solve the discrete logarithm problem for
q = 7, g = 3, and h = 5. That is, we want to find an integer a with 1 ≤ a ≤ 6
such that 3a = 5 mod 7. (Note that 3 is a primitive element for F∗7.) To do this,
we can just try different a until we succeed:

31 ≡ 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5,

so a = 5.

We see from the example that the discrete logarithm is trivial for small
numbers, but if we try to solve it in this way for q of cryptographic size then it
is not feasible. Let’s now consider a slightly bigger example in which we can do
something slightly more clever:

3

Example. Suppose that we want to solve the discrete logarithm problem for
q = 37, g = 2, and h = 17. That is, we want to find an integer a with 1 ≤ a ≤ 36
such that 2a ≡ 17 mod 37. (Here 2 is a primitive element of F∗37.) Remember
from last week that F∗37 is a cyclic group with 36 elements, so in particular it
has cyclic subgroups of size 2, 3, 4, 6, 9, 12, and 18. We use this structure to
compute a mod 2, 3, etc. until we have information about a to deduce it via
the Chinese Remainder Theorem.

• We start by computing a mod 2. The subgroup of 〈2〉 = F∗37 of order 2 is
given by 〈218〉. Write a = a0 + 2a1 (so that a ≡ a0 mod 2). Then 2a ≡ 17
mod 37, so

−1 ≡ 1718 ≡ (2a)18 ≡ 218a0+36a1 ≡ 218a0236a1 ≡ (218)a0 = (−1)a0 .

Hence a0 = 1 and therefore

a ≡ 1 mod 2.

• We now compute a mod 3. The subgroup of 〈2〉 = F∗37 of order 3 is given
by 〈212〉. Write a = b0 + 3b1 (so that a ≡ b0 mod 3). Then 2a ≡ 17 mod
37, so

26 ≡ 1712 ≡ (2a)12 ≡ 212b0+36b1 ≡ 212b0236b1 ≡ (212)b0 ≡ 26b0 .

Hence b0 = 1 and therefore

a ≡ 1 mod 3.

• We now compute a mod 4. The subgroup of F∗37 of order 4 is given by
〈29〉. We know from (1) that a = 1 + 2a1, so it suffices to know a1 mod
2. Write a1 = c0 + 2c1 (so that a1 ≡ c0 mod 2). Note that we know the
value of 22a1 as

17 ≡ 2a ≡ 21+2a1 ≡ 2 · 22a1 ,

so 22a1 ≡ 2−1 · 17 ≡ 27. This then gives us that

−1 ≡ 279 ≡ (22a1)9 ≡ (22c0+4c1)9 ≡ 218c0236c1 ≡ (−1)c0 .

Hence c0 = 1 and therefore

a ≡ 3 mod 4.

• We now compute a mod 9. The subgroup of F∗37 of order 9 is given by
〈24〉.We know from (2) that a = 1 + 3b1, so it suffices to know b1 mod
3. Write b1 = d0 + 3d1 (so that b1 ≡ d0 mod 3). Note that we know the
value of 23b1 as

17 ≡ 2a ≡ 21+3b1 ≡ 2 · 23b1 ,

4

so 23b1 ≡ 2−1 · 17 ≡ 27. This then gives us that

10 ≡ 274 ≡ (23b1)4 ≡ 2(12d0+36d1) ≡ (212)d0 ≡ 26d0 . ≡

Hence d0 = 2 and therefore

a ≡ 7 mod 9.

Now (3) and (4) together with the Chinese Remainder Theorem tell us that
a ≡ 7 mod 36, hence our discrete logarithm problem is solved.

From the example above we see that it if fact suffices to solve the discrete
logarithm problem in every prime power order subgroup of F∗q and then use
the Chinese remainder theorem, which can be much more efficient in the right
situation. The generalisation of the above example is called the Pohlig-Hellman
attack.

5 Pohlig-Hellman attack

The Pohlig-Hellman attack is an algorithm that outputs a = logg(h) given Fq
with primitive element g and some h ∈ Fq∗ . It works as follows: factorise q − 1
as

q − 1 = p`11 · · · p`rr ,

where for 1 ≤ i < j ≤ r, pi 6= pj and primes and for all i ≥ 1, `i ≥ 1. Then for
each i,

1. Write
a = ai,0 + ai,1pi + · · · ai,`ip

`i
i ,

where 0 ≤ ai,j < pi.

2. Compute gi = g
q−1
pi .

3. Compute ai,0 = loggi(h
q−1
pi) and set h0 = h.

4. For j = 1, . . . , `i − 1,

(i) compute hj = hj−1/g
ai,j−1p

j−1
i ,

(ii) compute ai,j = loggi h

q−1

p
j+1
i
j .

5. Return a mod p`ii .

The Chinese Remainder Theorem then gives a mod q − 1.
To protect against the Pohlig-Hellman attack, we should always choose q so

that F∗q has a large prime order subgroup (for example, q = 2n + 1 would be
very bad)! Some protocols actually work in this prime order subgroup.

5

Example. DSA, Digital Signature Algorithm, can be implemented in some
prime order subgroup 〈g〉 ⊆ F∗q of F∗q . (NB g is not a primitive element of F∗q
here!) If ord(g) = `, the protocol becomes:
Setup:

• Choose a random secret a ∈ {1, . . . , `}.

• Compute public key h = ga.

Sign a message m:

• Pick a random nonce k in {1, . . . , q−1} and compute r′ = gk ∈ F∗q . Choose
r ∈ Z such that r ≡ r′ mod `.

• Compute s ≡ k−1(H(m)+ar) mod ` (with a pre-determined hash function
H).

• The signature is given by (r, s).

Verify:

• Compute:

w ≡ s−1 mod `

u1 ≡ H(m)w mod `

u2 ≡ rw mod `

v′ ≡ gu1hu2 ∈ F∗q .

• Choose v ∈ Z such that v ≡ v′ mod `.

• Verify that v ≡ r mod `.

Note that this verification does indeed check that (r, s) is a signature for m
as

v ≡ v′ ≡ gu1hu2 ≡ gH(m)whrw ≡ gw(H(m)+ar) ≡ gr ≡ r.

So assuming that we choose our prime (power) q such that F∗q has a large
prime order subgroup, how can we solve the discrete logarithm problem? Pohlig-
Hellman solves it in time O(`), where ` is the size of the largest prime order
subgroup, but in fact we can still do better.

6 Baby Step Giant Step

One of the best generic algorithms known for solving the discrete logarithm
problem is baby step giant step. Again, we assume that we have a subgroup
〈g〉 ⊆ F∗q of prime order `, and that given h ∈ 〈g〉, we want to find a = logg(h).
The baby step giant step algorithm is as follows:

1. For i from 0 to b
√
`c, compute bi = gi.

6

2. For j from 0 to b
√
`c+ 1, compute cj = h · g−b

√
`c·j .

3. Find i and j such that bi = cj .

4. Return a = i + b
√
`c · j.

Note that then gi = h · g−b
√
`c·j , so that in particular gi+b

√
`c·j = h. Also,

every a can be written as a = a0 + a1b
√
`c with 0 ≤ a0 ≤ b

√
`c and 0 ≤ a1 ≤

b
√
`c+ 1, so this algorithm will always return an answer. Baby step giant step

takes 2
√
` multiplications and one inversion, which is already much better than

O(`)!

Example. Let’s use the baby step giant step algorithm to compute log3(37) in
F∗101. We have that 〈3〉 = F∗101, so ` = |F∗101| = 100, hence b

√
`c = 10. We first

do the ‘baby step’, that is, we compute bi = 3i for 0 ≤ i ≤ b
√
`c = 10:

i 0 1 2 3 4 5 6 7 8 9 10
3i 1 3 9 27 81 41 22 66 97 89 65

Now we do the ‘giant step’, this is, we compute cj = 37 · 3−10j for j ≥ 0 until
we find a value matching the table above:

j 0 1 2
cj 37 13 81

We see from the tables that b4 = c2, that is, that 34 ≡ 37 · 3−20 mod 101, hence
a = 24.

Baby step giant step gives us a large speed-up, but it uses O(
√
`) storage,

which is huge! Another alternative is to use Pollard’s rho method.

7 Pollard’s rho method

Again, we assume that we have a subgroup 〈g〉 ⊆ F∗q of prime order `, and that
given h ∈ 〈g〉, we want to find a = logg(h). In Pollard’s rho method, we look
for b, c, b′, c′ ∈ {1, . . . , `} such that

gbhc = gb
′
hc
′
.

This implies that in F∗q ,
gb−b

′
= ga(c

′−c),

hence
b− b′ ≡ a(c′ − c) mod `.

We find such b, c, b′, c′ by doing a pseudo-random walk on a graph with vertices
Gi defined by: G0 = g, b0 = 1, c0 = 0, and

(Gi+1, bi+1, ci+1) =

 (Gi · g, bi + 1, ci) if Gi = 0 mod 3
(Gi · h, bi, ci + 1) if Gi = 1 mod 3

(G2
i , 2bi, 2ci) if Gi = 2 mod 3,

7

and aborting when we find a loop. Observe that finding a loop means that we
have found some i 6= j such that Gi = Gj , which gives that

gbihci ≡ Gi ≡ Gj ≡ gbjhcj mod `.

This algorithm loops after approximately
√

π
2 ` steps and uses O(1) storage,

so is the most common algorithm in practise.

Example. Let’s compute a := log3(7) in F∗17 using Pollard’s rho method. The
algorithm outputs a list

(3, 1, 0), (9, 2, 0), (10, 3, 0), (2, 3, 1), (4, 6, 2), (11, 6, 3), (2, 12, 6).

The 4th and the 7th items in the list have the same first entry (i.e. G4 = G7),
so we have a loop. Hence

33 · 71 ≡ 312 · 76 ≡ 2 mod 17,

and a ≡ (12− 3)/(1− 6) mod 16, so

a = 11.

All the attacks presented so far do not make any use of any special properties
of the group F∗q or 〈g〉. Such algorithms are called ‘generic algorithms’ as they
work for any group. For groups without special properties these algorithms are
the best (known) to attack the discrete logarithm problem.

8

