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These notes are based on notes by Tanja Lange and Ruben Niederhagen.
Recall from previous courses the definition of a group:

Definition 1. A set together with an operation (G, ∗) is a group if the following
axioms are satisfied:

(G1) for all a, b ∈ G, a ∗ b ∈ G.

(G2) for all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

(G3) there exists e ∈ G such that for all a ∈ G, a ∗ e = e ∗ a = a.

(G4) for all a ∈ G, there exists b ∈ G such that a ∗ b = b ∗ a = e.

If furthermore for all a, binG we have that a ∗ b = b ∗ a then we say that G is
abelian.

Examples. • (Z,+) is an abelian group, with e = 0. In this case, inversion
is given by −.

• (Z/pZ,+) is an abelian group, again with e = 0.

• (Z, ·) is not an abelian group! (G4) is not satisfied.

• (Z/pZ, ·) is not an abelian group - (G4) is not satisfied for 0.

• Defining (Z/pZ)∗ := Z/pZ− {0} gives an abelian group ((Z/pZ)∗, ·).

Definition 2. A set K is a field with respect to + and · if the following axioms
are satisfied:

(F1) (K,+) is an abelian group.

(F2) (K∗, ·) is an abelian group, where K∗ = K − {0}.

(F3) for every a, b ∈ K, a · (b+ c) = (a · b) + (a · c).

Remark 1. A field has no zero divisors. (That is, there do not exist a, b ∈
K − {0} such that a · b = 0.)
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Proof. Exercise.

Examples. • Q, C, R, and Z/pZ are all fields.

• Q(i) := {a+ bi|a, b ∈ Q} is a field.

• Z is not a field - fails on (F2).

• Z[i] := {a+ bi|a, b ∈ Z} is not a field - also fails on (F2).

Definition 3. If K and L are fields and K ⊆ L, then K is a subfield of L, and
L is an extension field of K.

Some facts about subfields:

• We can add and multiply elements of K with elements of L.

• L is a vector space over K.

Examples. • Q ⊆ Q(i), so Q is a subfield of Q(i).

• Q ⊆ R, so Q is a subfield of R.

• Q(i) 6⊆ R, so Q(i) is not a subfield of R.

Definition 4. Let K be a field and let L be an extension field of K. The
extension degree [L : K] is defined as dimK(L), the dimension of L as a K-
vector space.

Example. Let K = R and L = C. Note that C = R(i) = {a+ bi|a, b ∈ R}, so
that C is a 2-dimensional R-vector space. You can visualise this by thinking of
the complex plane:

iR

// R

OO

So [C : R] = dimR(C) = 2.

Warning! The extension degree is not always finite!

Definition 5. Let K be a field. The characteristic of K, denoted char(K), is
the smallest positive integer m such that m · 1 = 0. If no such integer exists, we
define char(K) = 0.

Examples. • char(Q) = 0.

• char(Z/pZ) = p.

Lemma 1. The characteristic of a field is 0 or a prime.
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Proof. Suppose that char(K) = a · b = n, where a, b ∈ Z and 1 < a, b < n. Then

0 = (a · b) · 1
= ((a · 1) · b) · 1 by (G3)

= (a · 1) · (b · 1) by (G2)

= a · b. by (G3)

Then Remark 1 implies that a or b is 0, which contradicts the minimality of
n.

Lemma 2. A finite field K has characteristic p for some prime p.

Proof. (F1) and (G1) imply that for all i ∈ Z>0, we have that i = i · 1 =
1 + · · · 1 ∈ K. Then as K is finite, there must exist i, j ∈ Z>0 with i > j
such that i · 1 = j · 1, which implies by (F3) that (i− j) · 1 = 0. Therefore, the
characteristic ofK is a non-zero divisor of (i−j), hence is prime by Lemma 1.

We are starting to get a handle on what a finite field can look like. Let’s now
assume that we find a finite field L somewhere in nature. What do we already
know about it? We know:

Facts 1. 1. 0 ∈ L, by (F1) and (G3).

2. 1 ∈ L, by (F2) and (G3).

3. 0 6= 1, by definition of L∗ and (F2).

4. 1, 1 + 1, 1 + 1 + 1, ... ∈ L by (F1) and (G1).

5. there exists a prime p such that p · 1 = 0 by Lemma 2.

We also know a subfield of L: for all a ∈ Z such that 0 ≤ a < p and for all
k, k′ ∈ Z, we know that inside L,

n = a+ kp = a+ k′p = n′,

which looks like n ≡ n′ mod p. Mathematicians say in this instance that there
is a subfield of L that is ‘isomorphic’ to Z/pZ.

Definition 6. Let L be a field.The smallest subfield contained in L is called
the prime field of L.

Lemma 3. Let L be a finite field of characteristic p. The prime field of L is
isomorphic to Z/pZ.

Proof. There is a subfield of L that is isomorphic to Z/pZ, and all finite fields
have prime characteristic by Lemma 2.

From now on, we will identify the prime of L as above with Z/pZ. That is,
we will write ‘prime field = Z/pZ’. So now we can add a fact to our list from
Facts 1:

3



6. The prime field of L is Z/pZ.

Now we try to write down some elements of L that are not in Z/pZ. Recall from
Definition 3 that L is an extension field of Z/pZ and hence is a Z/pZ-vector
space. Define

n := dimZ/pZ(L) = [L : Z/pZ].

This means that there exists a Z/pZ-basis {α1, . . . , αn} of L. (Recall: a Z/pZ-
basis of L is a set {α1, . . . , αn} of elements of L such that for all y ∈ L, there
exist unique y1, . . . , yn ∈ Z/pZ such that x =

∑n
i=1 yiαi.) Now we have a

representation of all the elements of L, let’s add this to our list Facts 1:

7. Let {α1, . . . , αn} be a Z/pZ-basis of L. Then

L = {
n∑

i=1

yiαi|y1, . . . , yn ∈ Z/pZ}.

In particular, we can see from (7) that there are pn choices for the coefficients
y1, . . . , yn of the elements of L, so L has pn elements, giving us another fact for
our list Facts 1:

8. L has pn elements, where n = [L : Z/pZ].

The above can be summarised in the following lemma:

Lemma 4. Let L be a finite field. There exists a prime p and an integer n ∈ Z>0

such that |L| = pn and char(L) = p.

Definition 7. A finite field of size pn is written as

Fpn

or
GF (pn).

In particular, there do not exist finite fields which have size not a power of
a prime! So no finite fields of size 6,10,14,15,...

Remember from (F1) and (F2) that we should be able to add and multiply
in our field L. Let’s take the representation of elements given in (7). Adding is
easy:

x+ y =

n∑
i=1

xiαi +

n∑
i=1

yiαi =

n∑
i=1

(xi + yi)αi.

However to multiply, we need to know how to represent αiαj in the right form.
Let’s investigate the ‘multiplicative structure’. Recall from (F2) that L∗ =
L − {0} is a multiplicative group. Recall also from group theory that if G is a
finite (multiplicative) group, and m = |G|, then for all g ∈ G, gm = 1. Now L∗

is a finite multiplicative group, and

|L∗| = |L− {0}| = |L| − 1 = pn − 1.

Hence, for all y ∈ L∗, ypn−1 = 1.
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Remark 2. If there exists some y ∈ L∗ such that for all t ∈ Z with 0 < t <
pn − 1, yt 6= 1, then

L∗ = {y, y2, . . . , yp
n−1}.

Proof. Suppose for a contradiction that for some i, j ∈ Z with 0 < i < j ≤ pn−1
that yi = yj . Then yi−j = 1, so i− j = pn − 1, which is a contradiction.

If we are lucky and we can find a y ∈ L∗ as in the above remark, then we
say that L∗ is cyclic, or generated by one element (where that element is y). In
this case, we write

L∗ = 〈y〉.

Definition 8. Let y ∈ L∗. The minimal t ∈ Z>0 such that yt = 1 is called the
order of y, written as t = ord(y).

Let’s look for an element in L∗ of order pn − 1, since if one exists then we
can deduce so much about the structure! Observe that we can create elements
of high order from elements of lower order:

Suppose that x, y ∈ L∗, that ord(x) = k, and that ord(y) = `. Then by
definition of order, we have that xk = y` = 1, so that in particular

(xy)k` = (xk)`(y`)k = 1.

So
ord(xy)|k`.

Lemma 5. Let x and y be above. Then

ord(xy) = lcm(k, `).

Proof. Exercise.

Lemma 6. The smallest integer e > 0 such that for all y ∈ L∗ we have xe = 1
is pn − 1.

Proof. Assume that there exists an exponent e ≤ pn − 1 such that for every
y ∈ L∗ we have xe = 1. Then xe − 1 has a root at every a ∈ L∗. In particular,
we get that ∏

a∈L∗

(x− a)|xe − 1.

But the degree of the polynomial
∏

a∈L∗(x−a) is pn−1, so the degree of xe−1
is at least pn − 1. Hence e ≥ pn − 1.

Lemma 7. There exists g ∈ L∗ such that ord(x) = pn − 1.

Proof. Exercise. Hint: factorise pn − 1 into primes as pn − 1 = qm1
1 · · · qmr

r ,
use Lemma 5 and Lemma 6, and use that for every y ∈ L∗, we have that
ord(y)|pn − 1.

5



Corollary 1. Let L be a finite field. The multiplicative group L∗ = L− {0} is
cyclic.

Definition 9. Let L be a finite field. A generator g of L∗ (so that L∗ =
{g, g2, . . . , gpn−1}) is called a primitive element.

This gives us a new way of representing elements of L! So let’s add that to
our list Facts 1:

8. There exists a g ∈ L∗ such that

L = {0, g, g2, . . . , gp
n−1}.

Remember that we want to add and multiply elements for (F1) and (F2), but
in the vector space representation it was hard to multiply. In this representation,
multiplying is easy:

gi · gj = gi+j gi · 0 = 0 0 · 0 = 0.

(Here you should take the exponent mod pn).
What about adding? Let’s try to add 2 non-zero elements: suppose that

0 < i ≤ j < pn. Then
gi + gj = gi(1 + gj−i).

As 1+gj−i ∈ L, we know that either gj−i = −1 or there exists some k ∈ Z such
that gk = 1 + gj−i. Now as (−1)2 = 1 = gp

n−1, we have that g(p
n−1)/2 = −1.

So if gj−i = −1 then j − i = (pn − 1)/2. Hence in this case we can add.
So suppose that j 6= i + (pn − 1/2. Then there exists some k ∈ Z such that
gk = 1 + gj−i. There exists an algorithm to compute k, Zech’s algorithm, and
this is implemented in most computer algebra systems. But it is inefficient!
What else can we do?

This is all a lot of work. We should check that finite fields other than Z/pZ
even exist to make sure that our efforts are not in vain. The smallest example
we can try that is not of the form Z/pZ is a finite field of 4 elements, or F4.
If we check our list Facts 1 we see that F4 should be a 2 dimensional vector
space over Z/2Z, and hence there exists a Z/2Z-basis {1, α} of F4. That is, to
construct a field F4 we must formally choose an α such that

F4 = Z/2Z + αZ/2Z
= {0, 1, α, 1 + α}.

Let’s check if we can add and multiply so that (F1) and (F2) are satisfied. Using
the vector space structure, we can draw the group addition table for F4:

+ 0 1 α 1 + α
0 0 1 α 1 + α
1 1 0 1 + α α
α α 1 + α 0 1

1 + α 1 + α α 1 0
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The multiplication table for F∗4 (below) is a bit more work: we first fill
in the black entries, and then we show that α2 = α + 1 using that in a group
multiplication table each element occurs exactly once. (If α2 = 1 then α(α+1) =
1 + α giving 1 + α twice in the last column, a contradiction.)

· 1 α 1 + α
1 1 α 1 + α
α α 1 + α 1

1 + α 1 + α 1 α

These tables show that it is possible to define addition and multiplicative,
and checking the other axioms is left as an exercise. So there exists a field with
4 elements! Let’s look at the next simplest case: a field with 8 = 23 elements,
or F8. Checking our list Facts 1, we see that F8 (if it exists) is a 3-dimensional
vector space over Z/2Z, so let’s choose a basis {1, α, β}. Then

F8 = {0, 1, α, β, 1 + α, 1 + β, α+ β, 1 + α+ β}.

Addition will work exactly as before using the vector space representation -
but it’s less clear that we will be able to multiply. So let’s try to create a
multiplication table. Again, we can easily fill in the black entries of of the
multiplication table for F∗8 (below) but we get stuck when we get to α2. As
before, we can’t take α2 = 1 or α, and if we choose α2 = α + 1 then we’ll get
the same field as before, so not F8. As we have some freedom in choosing the
basis, there is more than one choice for α2, so we try

α2 = β. (1)

With this we can fill in the red entries, but again we get stuck at αβ. As
elements cannot appear more than once in any given row or column, we know
from the black and red entries that αβ 6= α, β, α + β. Also, if αβ = 1 then
the second entry in the final column is α(1 + α+ β) = 1 + α+ β, which occurs
already as a black entry in the final column, given a contradiction. Similarly, if
αβ 6= 1 +α+ β, then α(1 + β) = 1 + β which leads to a double entry in the 5th
column. So we are left with αβ = 1 + α or 1 + β, and we try

αβ = 1 + α. (2)

With this we can fill in the blue entries, and in fact arguining by contradiction
as above, you can show that β2 is uniquely defined as α + β, giving the green
entries.

· 1 α β 1 + α 1 + β α+ β 1 + α+ β
1 1 α β 1 + α 1 + β α+ β 1 + α+ β
α α β 1 + α α+ β 1 1 + α+ β 1 + β
β β 1 + α α+ β 1 + α+ β α 1 + β 1

1 + α 1 + α α+ β 1 + α+ β 1 + β β 1 α
1 + β 1 + β 1 α β 1 + α+ β 1 + α α+ β
α+ β α+ β 1 + α+ β 1 + β 1 1 + α α β

1 + α+ β 1 + α+ β 1 + β 1 α α+ β β 1 + α
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Everything from this point on was not covered in the lecture on 19/09/2017,
but is included here to help with the exercises.

It seems as if we will be able construct many finite fields by hand, but this is
a lot of work! How can we write down what we are doing when we fix equations
like (1) and (2) in a more general way?

Definition 10. If K is a field, then the polynomial ring K[x] is defined to be

K[x] =

{
n∑

i=1

aix
i|n ∈ Z≥1, ai ∈ K

}
.

For f(x) =
∑n

i=1 aix
i ∈ K[x] with an 6= 0, we say that an is the leading

coefficient of f(x), that anx
n is the leading term of f(x), and we define the

degree of f(x) to be n, written deg(f). If an, then we say that f(x) is monic.

Definition 11. We say that a polynomial f(x) ∈ K[x] is irreducible if deg(f) ≥
1 and it cannot be written as the product of polynomials of lower degree over
the same field. Otherwise we say that f(x) is reducible.

Examples. • x2 − 1 = (x− 1)(x+ 1) is reducible in Q[x].

• x2 + 1 is irreducible in R[x], but not in C[x].

• x4 + 2x2 + 1 = (x2 + 1)2 is reducible in R[x].

• f(x) = x3 + 6x2 + 4 is irreducible in Z/7Z, as there are no a ∈ Z/7Z such
that f(a) = 0, and a degree 3 polynomial is irreducible if and only if it
has no roots. (Do you see why?)

How does this help us generalise multiplication in finite fields? Recall that
with F∗8 our definition of multiplication was dependant on (1) and (2), which
were α2 = β and αβ = 1 + α, which together give

α3 + α+ 1 = 0.

(Remember that our coefficients are all mod 2 so sign doesn’t matter.) That is,
if the basis element α is a root of the polynomial

f(x) = x3 + x+ 1 ∈ F2[x],

then {1, α, α2} is a Z/2Z-basis of F8. You should think of calculating in F8 as
calculating ‘mod α3 + α+ 1’, in the following way:

F8 = (Z/2Z)[x]/(f(x)(Z/2Z)[x]) = {
n−1∑
i=0

aix
i modf(x)|ai ∈ Z/2Z},
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and we define addition and multiplication in F8 as addition and multiplication
in (Z/2Z)[x] followed by reduction mod f(x).

As f(x) is a degree 3 polynomial we can easily check if it’s irreducible: if
f(x) is reducible then at least one factor must be linear, and hence either f(0)
or f(1) = 0. But f(0) = f(1) = 1 mod 2 so f(x) is irreducible. In fact, we would
have run into trouble in our multiplication table is f(x) had been reducible (it
would be similar to trying to compute modulo a non-prime in Z).

With the above it is now a natural next step to see how to define addition and
multiplication in Fpn : let f(x) ∈ (Z/pZ)[x] be a monic irreducible polynomial
of degree n. Then we write Fpn as

Fpn = (Z/pZ)[x]/(f(x)(Z/pZ)[x]) = {
n−1∑
i=0

aix
i mod f(x)|ai ∈ Z/pZ},

and we define addition and multiplication in Fpn as addition and multiplication
in (Z/pZ)[x] followed by reduction mod f(x).

Example. Let’s see an example of how to compute in F8 using this general
construction. Define f(x) = x3 + x2 + 1 ∈ (Z/2Z)[x]. As deg(f) = 3 and
f(0) = f(1) = 1 in Z/2Z it is irreducible in (Z/2Z)[x], and it is clearly monic,
hence

F23 = (Z/2Z)[x]/(f(x)(Z/2Z)[x]).

Now x2 + 1 ∈ (Z/2Z)[x]/(f(x)(Z/2Z)[x]), where · denotes reduction mod f(x),

so what is (x2 + 1)
−1

?
For any element g of (Z/2Z)[x]/(f(x)(Z/2Z)[x]), there exist a, b, c ∈ Z/2Z

such that g = ax2 + bx+ c, and if g = (x2 + 1)
−1

, then

(x2 + 1)(ax2 + bx+ c) ≡ 1 mod f(x)

⇒(b+ c)x2 + (a+ b)x+ a+ b+ c ≡ 1 mod f(x)

⇒a+ b+ c ≡ 1 mod 2, and a ≡ b ≡ c mod 2

⇒(x2 + 1)
−1

= x2 + x+ 1.

The only ingredient that we are missing from our nice representation of finite
fields is how to check if a polynomial is irreducible. In all the examples we saw
so far the polynomial had small enough degree that if it was reducible then it
had a root, but for polynomials of degree ≥ 4 this will no longer work! For this
we have the Robin test:

Robin Test. Let Fq be a finite field with q = pr elements for p a prime and
r ∈ Z>0, and let f(x) ∈ Fq[x] be a degree n polynomial. Then f(x) is irreducible
if and only if

(i) f(x)|(xqn − x) in Fq[x] and

(ii) for all d|n such that d 6= n, gcd(f(x), xq
d − x) = 1.
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Notes on the Robin test:

1. It is enough to check for prime divisors d of n.

2. Reductions mod f(x) are particularly efficient if f(x) is a binomial (i.e.
f(x) = xn − a for some a).

Example. We saw above that x3 + x2 + 1 ∈ F2[x] is irreducible, so let’s check
that it satisfies (i) and (ii) of the Robin test.

• x23+x = x(x7+1) = x(x3+x2+1)(x4+x3+x2+1), so (x3+x2+1)|(x23−x)
in F2[x].

• {d|3|d 6= 3} = {1}, so it suffices to prove that gcd((x2−x), (x3+x2+1)) =
1. But x2− x = x(x− 1) neither x nor x− 1 divide x3 + x2 + 1 as neither
0 or 1 are roots of x3 + x2 + 1. Hence gcd((x2 − x), (x3 + x2 + 1)) = 1.

Now by the Robin test, x3 + x2 + 1 is irreducible in F2[x].

Example. Let’s look at a slightly bigger example: f(x) = x5+x4+x3+x2+1 ∈
F2[x]. Here n = 5 and q = 2. Now

x2
5

− x = x(x5 + x4 + x3 + x2 + 1)(x26 + x25 + x22 + x19 + x18 + x17 + x16

+ x15 + x13 + x12 + x11 + x7 + x5

+ x3 + x2 + 1),

so f(x)|(x25 −x) and hence (i) of the Robin test in satisfied. As n = 5 is prime,
for (ii) it suffices to show that gcd(f(x), x2 − x) = 1. As x2 − x = x(x− 1) and
neither 0 nor 1 are roots of f(x) this holds. Hence f(x) is irreducible in F2[x].
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