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These notes are based on notes by Tanja Lange. Recall from last time that
we defined an Edwards curve to be a curve of the form

x2 + y2 = 1 + dx2y2,

where d ∈ F∗q is a non-square, and gave a group law on the set of Fq points
of this curve. You can do exactly the same thing with twisted Edwards curves,
which are curves of the form

ax2 + y2 = 1 + dx2y2,

where a, d ∈ F∗q and d is a non-square. Both Edwards curves and twisted
Edwards curves are examples of elliptic curves, which will be the topic of this
lecture.

1 Elliptic curves in Weierstrass form

The most common representation of an elliptic curve over a field K (i.e. with
coefficients in K) is Weierstrass form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a0,

where ai ∈ K. This is the most common form as every elliptic curve can be
written in this way. Although the Edwards and twisted Edwards curves we saw
before have an x2y2 term which does not appear in the Weierstrass model, there
is a transformation to take an Edwards curve to a Weierstrass curve; more on
that later.

If K has characteristic different from 2 or 3 (for K = Fpr this means that
p 6= 2 or 3), then every elliptic curve can be written in short Weierstrass form

E : y2 = x3 + ax + b,

with a, b ∈ K and 4a3+27b2 6= 0. Many people consider this to be the definition
of an elliptic curve.
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Examples. Here is an example with a = −2 and b = 2, i.e., the curve y2 =
x3 − 2x + 2:

Here is an example with a = −2 and b = 1, i.e., the curve y2 = x3 − 2x + 1:

To see why we have excluded a and b such that 4a3 + 27b2 = 0, consider the
following non-examples of elliptic curves:

• a = b = 0, the curve y2 = x3:
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• a = −3, b = 2, the curve y2 = x3 − 3x + 2:

So we include the condition 4a3 + 27b2 = 0 to avoid curves with ‘sharp’
points or curves that cross themselves. Now we would like to make a group
from the points on an elliptic curve as we did with circles and with Edwards
curves. So define

G = {(x, y) ∈ Q×Q : y2 = x3 + ax + b}
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for some a, b ∈ Q. We can ‘almost’ make a group from G. The group law on
Weierstrass curves has a nice geometric definition.

• We define the inverse of a point (x, y) to be (x,−y).

• We define every vertical line to have an invisible point P∞, ‘the point at
infinity’, and this is the neutral element of the group.

• We define a straight line that is tangent to the curve to intersect the curve
twice at that point.

• With the above conventions, every straight line passing through at least
2 points on the curve intersects the curve in exactly 3 points. We define
the sum of 3 points on a straight line to be P∞, hence addition looks like
this:
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We made quite a few choices in defining our group law +, so we need to
check the group axioms to make sure that it is really a group law for G∪{P∞}:

(G1) To check (G1), we need to make sure that given P and Q in G ∪ {P∞},
P + Q ∈ G ∪ {P∞}. If P or Q = P∞ this is trivial, so assume otherwise.
P + Q is on the curve by definition, so we only need to check that the
coordinates are rational. The coordinates of P + Q are rational if and
only if the coordinates of −(P + Q) are rational, which was the third
point of intersection between the line through P and Q and the elliptic
curve. Suppose that the the equation of the line through P and Q is given
by y = mx+ c. Then as P and Q have rational coordinates, m and c ∈ Q.
To get the third point of intersection of y = mx+ c with y2 = x3 +ax+ b,
we just plug y into E to get a cubic in x with rational coefficients, 2 roots
of which (xP and xQ) are known to be rational, hence the third is also
rational. So the x-coordinate of −(P + Q) is rational, hence also the y
coordinate as y = mx + c.

(G2) To check (G2), we need to check that given P , Q, and R ∈ G ∪ {P∞},
P + (Q + R) = (P + Q) + R. Checking this by writing out the formulae
is easy but long, so we skip it.

(G3) Axiom (G3) states that there exists a neutral element, which is P∞ by
definition.

(G4) Axiom (G4) states that every element has an inverse, which we saw already
was given by reflecting about the x-axis.

Remark 1. Another way to think of P∞ is the following. When we study
elliptic curves and their associated groups, the y2 = x3 + ax + b (with a and b
in K) comes from setting x = X/Z and y = Y/Z in the equation

Y 2Z = X3 + aXZ2 + bZ3.
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Note that every term in this equation has degree 3, so that if (X0, Y0, Z0) is a
solution of this equation, then (nX0, nY0, nZ0) is also a solution of the equation
for every n in K. For this reason, if (nX0, nY0, nZ0) = (X0, Y0, Z0) then we say
that the 2 solutions are equivalent. Observe that these solutions all correspond
to a unique x and y! The point at infinity is

P∞ = (0, 1, 0)

in (X,Y, Z)-coordinates, which gets ‘sent to infinity’ when we switch to (x, y)-
coordinates. Note that this is always on the curve!

Having intuitively constructed a geometric group law elliptic curves over Q,
if we now write down the formulae for adding points, we can get a group law
for elliptic curves over Fq. So what are the formulae for adding?

Write P = (xP , yP ) and Q = (xQ, yQ), and define (xR, yR) = R = P + Q.
We want to write down a formula for xR and for yR. We know that P , Q, and
−R all lie on the straight line passing through P and Q, so we first calculate
the formula of this line. The equation of this line is y = mx + c where

m =

{
(yQ − yP )/(xQ − xP ) P 6= Q

(3x2
P + a)/(2yP ) P = Q

and
c = yP −mxP .

(Recall that the gradient of a tangent line to a curve at a point P is the value
of dy

dx at P .) We plug in y = mx + c with m and c as above to the equation for
E and solve to find the intersection points:

(mx + c)2 = x3 + ax + b.

We know that the roots of this cubic are xP , xQ, and xR, so

x3 − (mx + c)2 + ax + b = (x− xP )(x− xQ)(x− xR).

Then by comparing coefficients of x2, we see that

xR = m2 − xP − xQ.

Then we can just use the equation of the line to compute yR:

yR = −y−R = −(mxR + c).

With these explicit formulae, we can define, for any a, b ∈ Fq such that 4a3 +
27b2 6= 0, a group law on

G = {(x, y) ∈ Fq × Fq : y2 = x3 + ax + b} ∪ {P∞}

as
(xP , yP ) + (xQ, yQ) = (m2 − xP − xQ,−m(m2 − xP − xQ)− c),
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where

m =

{
(yQ − yP )/(xQ − xP ) P 6= Q

(3x2
P + a)/(2yP ) P = Q

and
c = yP −mxP .

All the case distinctions with P∞ mean that with this group law we have
a lot more checks than with Edward’s curves, so it can be nicer to work with
Edwards curves and then transform to Weierstrass if necessary. Before seeing
how to do this, we define one more curve shape.

2 Montgomery curves

Definition 1. A Montgomery curve is a curve of the form

MA,B : Bv2 = u3 + Au2 + u

for B(A2 − 4) 6= 0. The group law looks very similar to the group law for
Weierstrass curves:

(u1, v1)⊕ (u2, v2) = (Bm2 −A− u1 − u2,m(u1 − u3)− v1),

where u3 = Bm2 −A− u1 − u2, and

m =

{
(v1 − v2)/(u1 − u2) (u1, v1) 6= (u2, v2)

(3u2
1 + 2Au1 + 1)/(2Bv1) (u1, v1) = (u2, v2).

The neutral element is again P∞.

We have now mentioned a few times a ‘transformation’ that relates different
curve shapes. We would like a way to say when 2 curves are ‘the same’, or at
least a way to say what ‘the same’ means! Let’s think about what this would
mean in an ideal world..

Remember that last time we thought about how to do Diffie-Hellman in
curve groups:

• Setup: Alice and Bob agree on a curve Cd or MA,B over a field Fq and a
point P on the curve that generates a large group.

• Alice chooses a secret key a ∈ Z, computes her public key aP , and sends
it to Bob.

• Bob chooses a secret key b ∈ Z, computes his public key bP , and sends it
to Alice.

• Alice computes the shared secret as a(bP ) = (ab)P and Bob computes it
as b(aP ) = (ab)P .
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Suppose that we have some map from the Edwards curve

Cd : x2 + y2 = 1 + dx2y2

to the Montgomery curve MA,B above given by

f : Cd −→MA,B .

Suppose that we know some way to break the DLP for curves, i.e., to find n
given nQ, on a Montgomery curve, but that Alice and Bob have used an Edwards
curve. It would be nice if for all points P on Cd and for all a ∈ Z, we had that
f(aP ) = af(P ), as f(P ) = Q and af(P ) = aQ are points on a Montgomery
curve, so then we can find a (if we can break DLP on a Montgomery curve).
That is, if f satisfies this nice property of f(aP ) = af(P ), we can somehow
translate the discrete logarithm on Cd to a discrete logarithm on MA,B . It
would also be nice to be able to go the other direction, that is if there’s a map

g : MA,B −→ Cd

that is the inverse of f . Some other nice properties to require of f :

• f(P + Q) = f(P ) + f(Q)

• f((0, 1)) = P∞ (remember that the neutral point on Cd was (0, 1).

We can write down a nice map from a twisted Edwards curve to a Mont-
gomery curve:

ax2 + y2 = 1 + dx2y2 −→ Bv2 = u3 + Au2 + u
(x, y) 7−→ (u, v) = ((1 + y)/(1− y), (1 + y)/(x(1− y)))
(a, d) 7−→ (A,B) = (2(a + d)/(a− d), B = 4/(a− d).

In other direction we have the map:

Bv2 = u3 + Au2 + u −→ ax2 + y2 = 1 + dx2y2

(u, v) 7−→ (x, y) = (u/v, (u− 1)/(u + 1))
(A,B) 7−→ (a, d) = ((A + 2)/B, (A− 2)/B).

By a similar transformation we can go from Montgomery to Weierstrass,
but not necessarily back! All elliptic curves are Weierstrass, but not all can
be written in Edwards/Montgomery form. There is a quick way to see this:
Edwards curves (and hence Montgomery curves) always have a point (1, 0) of
order 4, and there are examples of Weierstrass curves that do not. To see that
(1, 0) is a point of order 4, recall the doubling formula for Edwards curves from
last time:

2 · (x, y) =

(
2xy

x2 + y2
,

y2 − x2

2− x2 − y2

)
.
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Then we can easily compute

2 · (1, 0) = (0,−1)

and hence
4 · (1, 0) = 2 · (0,−1) = (0, 1).

(Recall that (0, 1) is the neutral element.)
Some final observations on elliptic curves:

• Computations on Edwards curves are faster than on curves in Weierstrass
form, so you should use Edwards curves for implementations when possi-
ble.

• Weierstrass curves are much older than Edwards curves, and much more
widely studied, which acts as a security argument for the newer Edwards
curves (from 2007) - as for example the Discrete Logarithm problem can
be translated along transformations.

• More formulae for addition/doubling on elliptic curves in various shapes
are available at hyperelliptic.org/EFD.
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