
Cryptology Fall 2017

Chloe Martindale
TU/e

October 10, 2017

These notes are based on notes by Tanja Lange. In the last lecture we saw
how to construct a group law on a circle. Today we will construct a group law
on an Edwards curve, which can be used for a Diffie-Hellman key exchange and
is not susceptible to index calculus-style attacks.

1 Clarification from previous lectures: arithmetic
in finite fields

Following questions from a significant number of students, we first quickly go
over some basics of arithmetic in finite fields of prime order (Fp)).

• Suppose that n,m ∈ Z. We say that ‘n and m are the same mod p’ (and
we write n ≡ m mod p if there exists a ∈ Z such that n = m + ap. Note
that this happens if and only if p|(n −m), which we can think of as ‘the
remainder when you divide n−m by p is 0’.

• There is a finite list of numbers that are all different mod p, and we can
represent Z/pZ by any choice of p numbers are not the same mod p. Some
different representations of Z/7Z are

{−3,−2,−1, 0, 1, 2, 3},

{0, 1, 2, 3, 4, 5, 6},

{32, 33, 34, 35, 36, 37, 38}, . . .

• Suppose that g ∈ F∗
p has order `, so that

{g, g2, . . . , g`} = 〈g〉 ⊆ F∗
p

and g` = 1 = |〈g〉|. Then calculations with elements in F∗
p are mod p,

giving statements like ‘ga ≡ h mod p’. Suppose that there exist a, b ∈ Z
such that ga ≡ gb ≡ h mod p. Then

h ≡ ga ≡ gb ≡ 1 · gb ≡ g` · gb ≡ gb+` mod p,

1

and in fact for any n ∈ Z,

h ≡ ga ≡ gb ≡ 1n · gb ≡ gn` · gb ≡ gb+n` mod p.

So any a ∈ {b, b + `, b− `, b + 2`, b− 2`, · · · } satisfies the equation

ga ≡ h mod p.

In other words, it is enough to determine a mod `. In particular, after we
take the log of an equation, all our calculations will be mod ` (not mod
p).

• If you’re in doubt about whether to compute mod p or mod `, you can
always double-check with g = −1 (and p 6= 2). Then 〈g〉 = {−1, 1}, so
` = |〈g〉| = ord(g) = 2. In this case, ga ≡ 1 mod p if and only if a is even,
i.e., a ≡ 0 mod `.

2 Edwards curves

Having constructed a group law for points on a circle, and noting that the
security level of a Diffie-Hellman key exchange is similar to that of finite fields,
we try a slightly more complicated curve that will not be susceptible to such
attacks: the Edwards curve.

Example. Let’s try to make a group from the points on an Edwards curve. We
will look first at the example

C : x2 + y2 = 1− 30x2y2.

2

Note that the equation of C looks similar to the equation of a circle with a
‘fudge factor’, and we will see that we can construct a group law similar to that
of the circle plus this ‘fudge factor’. Define

G = {(x, y) ∈ R× R : x2 + y2 = 1− 30x2y2}.

Claim 1. For (x1, y1), (x2, y2) ∈ G define

(x1, y1)⊕ (x2, y2) :=

(
x1y2 + y1x2

1− 30x1y1x2y2
,

y1y2 − x1x2

1 + 30x1y1x2y2

)
.

Then (G,⊕) is a group with neutral element (0, 1).

Proof. We first have to check that we didn’t divide by zero, that is, we should
check that for (x1, y1), (x2, y2) ∈ G, we never get that 1 ± 30x1x2y1y2 = 0. If
x1, x2, y1, or y2 = 0 then this is clearly non-zero, so suppose that x1, x2, y1, and
y2 are non-zero. Then by the curve equation, for i = 1, 2,

x2
i + y2i + 30x2

i y
2
i = 1,

and x2
i + y2i > 0 so

30x2
i y

2
i < 1,

hence √
30|xiyi| < 1.

Therefore
30|x1x2y1y2| =

√
30|x1y1|

√
30|x2y2| < 1 · 1 = 1,

so the denominators of the operation ⊕ are never zero. We still need to check
that it actually defines a group law, that is, that the group axioms (G1)-(G4)
are satisfied.

(G1) For the axiom (G1), we have to check that (x1, y1)⊕ (x2, y2) ∈ G, that is,
we have to check that(

x1y2 + y1x2

1− 30x1y1x2y2

)2

+

(
y1y2 − x1x2

1 + 30x1y1x2y2

)2

= 1− 30

(
x1y2 + y1x2

1− 30x1y1x2y2

)2 (
y1y2 − x1x2

1 + 30x1y1x2y2

)2

,

which we can do just by simplification.

(G2) For the axiom (G2), we have to check that if (x1, y1), (x2, y2), and (x3, y3) ∈
G, then

((x1, y1)⊕ (x2, y2))⊕ (x3, y3) = (x1, y1)⊕ ((x2, y2)⊕ (x3, y3)),

which we can again doing just by plugging in the formulae and simplifying.

3

(G3) For the axiom (G3), we have to check that for every (x, y) ∈ G, (x, y) ⊕
(0, 1) = (0, 1) ⊕ (x, y) = (x, y). We plug (x1, y1) = (x, y) and (x2, y2) =
(0, 1) into our formula for ⊕ to get

(x, y)⊕ (0, 1) =

(
x · 1 + 0 · y

1− 30x · y · 0 · 1
,

y · 1− x · 0
1 + 30x · y · 0 · 1

)
= (x, y),

and similarly for (0, 1)⊕ (x, y).

(G4) For the axiom (G4), we have to check that for every (x, y) ∈ G, there
exists −(x, y) ∈ G such that (x, y) + (−(x, y)) = (0, 1). We claim that
−(x, y) = (−x, y):

(x, y)⊕ (−x, y) =

(
xy − xy

1− 30x2y2
,

x2 + y2

1 + 30x2y2

)
= (0, 1),

as by the curve equation x2 + y2 = 1 + 30x2y2.

Definition 1. Suppose that d ∈ F∗
q is a non-square (i.e., that for g a primitive

element of F∗
q , d = gk for k odd). Then the curve

Cd : x2 + y2 = 1 + dx2y2

is an Edwards curve over Fq.

Note that the example we looked at was C−30 but over R. In fact

(x1, y1)⊕ (x2, y2) :=

(
x1y2 + y1x2

1 + dx1y1x2y2
,

y1y2 − x1x2

1− dx1y1x2y2

)
defines a group law of Cd just as before. Checking the group axioms is exactly
the same process, but the proof that the denominators are non-zero is different,
we will write that out. Before we do, let’s remind ourselves why we want (G,⊕)
where

G = {(x, y) ∈ Fq : x2 + y2 = 1 + dx2y2}

to be a group in the first place: let’s write down a Diffie-Hellman key exchange
with our group as (G,⊕) rather than (F∗

q , ·).

• Setup: Alice and Bob agree on a curve Cd and an element (x, y) ∈ G that
generates a large subgroup of G (via ⊕).

• Alice chooses a secret key a ∈ Z, computes her public key a · (x, y) and
sends it to Bob.

• Bob chooses a secret key b ∈ Z, computes his public key b ·(x, y) and sends
it to Alice.

4

• Alice computes the shared secret b · (a · (x, y)) = (ab) · (x, y).

• Bob computes the shared secret a · (b · (x, y)) = (ab) · (x, y).

In order to be able to do this, we need to able to multiply points by an
integer, which is defined as adding them to themselves (via ⊕), for which we
need ⊕ to be a group law, which we now prove is at least well-defined.

Claim 2. Suppose that P1 = (x1, y1) and P2 = (x2, y2) are on Cd, i.e. that for
i = 1, 2

x2
i + y2i = 1 + dx2

i y
2
i .

Then
1± dx1x2y1y2 6= 0.

Proof. Suppose for a contradiction that

dx1x2y1y2 = ±1. (1)

Then

dx2
1y

2
1(x2 + y2)2 = dx2

1y
2
1(x2

2 + y22 + 2x2y2)

= dx2
1y

2
1(1 + dx2

2y
2
2 + 2x2y2)

= d2x2
1y

2
1x

2
2y

2
2 + dx2

1y
2
1 + 2(dx1x2y1y2)x1y1

= 1 + dx2
1y

2
1 ± 2x1y1

= (x1 ± y1)2,

but as d is non-square, dx2
1y

2
1(x2 + y2)2 is non-square or zero, and (x1 ± y1)2 is

square, so we must have that

dx2
1y

2
1(x2 + y2)2 = (x1 ± y1)2 = 0.

By the assumption dx1x2y1y2 = ±1 that x1, y1, x2, and y2 are non-zero, and by
definition that d = 0, hence

x2 + y2 = 0.

But if (x2, y2) is on Cd, then (x2,−y2) is also on Cd, hence the above argument
with y2 = −y2 gives that

x2 − y2 = 0,

hence x2 = y2 = 0, which is a contradiction to (1).

So we have a group under ⊕ made up of the Fq-points on Cd, but how easy
is arithmetic in this group? It is harder to break Diffie-Hellman in a group
with this structure, but arithmetic still needs to be easy enough to perform
encryption! Note first of all that doubling a point is actually easier than adding
2 different points:

5

2 · (x, y) = (x, y)⊕ (x, y)

=

(
2xy

1 + dx2y2
,

y2 − x2

1− dx2y2

)
=

(
2xy

x2 + y2
,

y2 − x2

2− x2 − y2

)
.

These equations have lower degree than the equations for adding two differ-
ent points, which means faster computation (we will see later how much faster).
Still, we have to do an inversion to compute the sum of 2 points or the double
of a point, but we can ‘delay’ this inversion. So, our aim now is to compute

(x3, y3) := (x1, y1)⊕ (x2, y2)

with the minimum number of inversions and multiplications. To ‘delay’ the
inversion, we introduce new variables Xi, Yi, Zi and substitute xi = Xi/Zi and
yi = Yi/Zi. Then

x3 =
(X1Y2 + X2Y1)Z1Z2

(Z1Z2)2 + dX1X2Y1Y2

and

y3 =
Z1Z2(Y1Y2 −X1X2

(Z1Z2)2 − dX1X2Y1Y2
.

Define
X3 = Z1Z2(X1Y2 + X2Y1)((Z1Z2)2 − dX1X2Y1Y2),

Y3 = Z1Z2(Y1Y2 −X1X2)((Z1Z2)2 + dX1X2Y1Y2),

and
Z3 = ((Z1Z2)2 − dX1X2Y1Y2)((Z1Z2)2 + dX1X2Y1Y2).

Then x3 = X3/Z3 and y3 = Y3/Z3, and if we just compute X3, Y3, and Z3 then
we don’t have to do any inversions! In fact, X3, Y3, and Z3 can be computed
in just 10 multiplications (M), one squaring (S), and one multiplication by (D)
in the following way:

1. A = Z1Z2, B = A2, C = X1X2, D = Y1Y2. (3M + 1S).

2. E = dCD, F = B − E, G = B + E. (1M + 1D).

3. X3 = AF ((X1 + Y1)(X2 + Y2)− C −D). (3M).

4. Y3 = AG(D − C). (2M).

5. Z3 = FG. (1M).

6

Note that in step 3 we reduced the multiplications by a clever trick:

X1Y2+X2Y1 = X1Y2+X2Y1+X1X2+Y1Y2−X1X2−Y1Y2 = (X1+Y1)(X2+Y2)−C−D.

Doubling can be done in just 4S + 3M, so here we concretely that it is much
faster than adding distinct points.

You can also make scalar multiplication faster by precomputing some mul-
tiplications of P , e.g., by using that

15P = 8P + 4P + 2P + P.

7

