
Cryptology Fall 2017

Chloe Martindale
TU/e

October 5, 2017

These notes are based on notes by Tanja Lange. In the last few lectures we
constructed some cryptosystems based on the hardness of the discrete logarithm
problem and looked at the best known generic attacks. We will now see the best
known attack for the discrete logarithm problem applied to a group which is a
subgroup of F∗

q , called the index calculus method.

1 Index calculus method

The index calculus method is a way of solving the discrete logarithm problem
for finite fields. Warning: this method does not apply to general groups!

As with all our algorithms to attack DLPs, our aim is, given h ∈ 〈g〉 ⊆ F∗
q ,

to find a := logg(h). To make things simpler, for now we will consider only
finite fields with q = p prime. The algorithm for q = p is prime is as follows:

1. Lift h to an integer h (i.e. choose h ∈ Z such that h ≡ h mod p).

2. Factor h into prime powers h =
∏n

i=1 p
ei
i .

3. Compute logg(pi) for i = 1, . . . , n.

4. Compute

logg(h) = logg(
n∏

i=1

peii) =
n∑

i=1

ei logg pi.

Observations. • At first glance, this algorithm may not look very efficient:
in the context of RSA we said that (2) is hard, and in (3) we have to
compute discrete logarithm problems. But: some numbers are easy to
factor! For example 2n.

• We call a number with only small prime factors a smooth number. For
smooth numbers, both (2) and (3) will not be too hard.

• Even if h is not smooth, chances are that there is some small j for which
gjh is smooth. So, we try a few j until we find a smooth number gjh,
compute logg(gjh) with the algorithm above, and then compute

logg(h) = logg(gjh)− j.

1

• For step (3), we want to compute logg(pi) for lots of small primes pi, called
the factor base F .

• If |F| is large, it is more likely that we find a small j such that gjh factors

of F (i.e. all the prime factors of gjh are in F).

• If |F| is large, we have to compute more discrete logarithm problems,
which gives a subtle trade-off. So choosing a good F can only be done
with careful study of the available space and computing time.

• If all the prime factors of h are in F , we say that h is F-smooth.

Let’s apply this algorithm to an example:

Example. Set p = 107, g = 17, and h = 91. That is, we want to compute a
such that 17a ≡ 91 mod 107. Observe that 〈17〉 = F∗

107, so for every x ∈ 〈17〉
we have that x106 = 1, so that the powers of elements in 〈17〉 can be computed
mod 106.

We choose a factor base
F = {2, 3, 5},

so we want to compute log17(2), log17(3), and log17(5). To do this, we first
compute 17j for j = 0, 1, . . . until we find 3 = |F| values of j such that 17j is
F-smooth:

172 ≡ 31 · 52 mod 107,

hence
2 = log17(3) + 2 log17(5). (1)

Then 173, . . . , 178 all have primes that are not in F in their factorisation, but

179 ≡ 22 · 51 mod 107,

hence
9 = 2 log17(2) + log17(5), (2)

and
1711 ≡ 2 mod 107,

hence
log17(2) = 11. (3)

Now, observe that (1), (2), and (3) are just 3 simultaneous equations with
variables log17(2), log17(3), and log17(5), so we can solve them to get

log17(2) ≡ 11 mod 106, log17(3) ≡ 28 mod 106, and log17(5) ≡ 93 mod 106.

Now that we have the discrete logarithms of the primes in our factor base F ,
we search for a j such that gjh is F-smooth, that is, such that all the prime
factors of gjh are in F . This does not hold for j = 0, 1, 2, 3, 4, but

91 · 175 ≡ 22 · 52 mod 107.

2

Therefore,

log17(91) = log17(17−5 · 175 · 91)

= −5 + log17(175 · 91)

≡ −5 + log17(22 · 52) mod 106

≡ −5 + 2 log17(2) + 2 log17(5) mod 106

≡ −5 + 2 · 11 + 2 · 93 mod 106

≡ 97 mod 106.

From the size of the example, perhaps we already see that the index calculus
method is much faster that Pollard rho or baby step giant step, but how do we
measure this? Define

LN (α, c) = ec(logN)α(log logN)1−α .

This looks very complicated, but notice that

LN (1, c) = ec logN = N c

describes the complexity of a function that is exponential in N , and

LN (0, c) = ec log logN = (logN)c

describes the complexity of a function that is polynomial in N . We use LN (α, c)
to measure how close a function is to being polynomial or exponential; for
0 < α < 1 we say that the function is subexponential or superpolynomial.

The complexity of the index calculus algorithm that we described above is
Lq(1/2, c), and c depends on whether q is prime, a power of 2, or otherwise.
With optimisations, the index calculus algorithm has complexity Lq(1/3, c), so
it is indeed much better than Pollard rho or baby-step-giant-step. Note that
the complexity is independent of the order of g (which we called ` before) - it
depends only on the size of the finite field.

Due to index calculus attacks, q has to be > 3000 bits to achieve 128-bit
security with for example a Diffie-Hellman key exchange using F∗

q , whereas if
we can construct a different group with which we can perform Diffie-Hellman
that is not susceptible to index calculus attacks, then q of 256 bits will suffice
to protect against Pollard rho and baby-step-giant-step.

2 Elliptic curves

We will construct a group that is not just a subgroup of F∗
q by studying ‘ellip-

tic curves’. For suitably chosen ‘elliptic curves’ no subexponential attacks are
known, so that (the optimised version) of Pollard rho is the best known attack!
This means that smaller finite fields can be used than if we do crypto with F∗

q .
The advantage of this is that the arithmetic is faster and the protocols use less
memory, which is good for small devices.

3

Before we get to elliptic curves, we’ll try to construct a group on a more
familiar curve: a circle. This is not an elliptic curve! Warning: elliptic curve
and ellipse mean different things!

The equation of a circle over R is given by

x2 + y2 = 1,

so that the set of points on the circle is given by

G = {x, y ∈ R : x2 + y2 = 1}.

Some examples of points:

(0, 1), (0,−1), (1, 0), (−1, 0),

(
√

3/2, 1/2), (−
√

3/2, 1/2), (
√

3/2,−1/2), (−
√

3/2,−1/2),

(1/2,
√

3/2) (1/2,−
√

3/2), (−1/2,
√

3/2), (−1/2,
√

3/2).

We want our set G to be a group. Remember that a group has a group operation
such as + or ×. Let’s call our group operation ⊕. So, we need a way of ‘adding’
points in G so that the sum of 2 points is also in G. That is, we want to use 2
points on the circle to get another point on the circle.

Recall that x2 +y2 = 1 is paramatrised by x = sin(α) and y = cos(α), where
α is the angle between the y-axis and the line passing through (0, 0) and (x, y).
Let’s try to define ⊕ by adding the angles, that is

(x1, y1)⊕(x2, y2) = (sin(α1, cos(α1)⊕(sin(α2), cos(α2)) = (sin(α1+α2), cos(α1+α2)).

We can check that this makes (G,⊕) into a group by checking the group axioms:

(G1) (x1, y1)⊕ (x2, y2) ∈ G by construction.

(G2) (x1, y1)⊕ ((x2, y2)⊕ (x3, y3)) = ((x1, y1)⊕ (x2, y2))⊕ (x3, y3) by construc-
tion.

(G3) The neutral element is (0, 1), as this corresponds to the zero angle.

(G4) The inverse of (x, y) is (−x, y), as the sum of the angles gives the zero
angle.

All our axioms are satisfied, so (G,⊕) is a group. Using the addition formulae
from trigonometry, we can even write down a ‘group law’:

(x1, y1)⊕ (x2, y2) = (sin(α1), cos(α1))⊕ (sin(α2), cos(α2))

= (sin(α1 + α2), cos(α1 + α2))

= (sinα1 cosα2 + sinα2 cosα1, cosα1 cosα2 − sinα1 sinα2)

= (x1y2 + x2y1, y1y2 − x1x2).

This means that we can add points without computing the angles corre-
sponding to them using the group law, for example

4

• ‘9:00’ ⊕ ‘6:00’ = (−1, 0)⊕(0,−1) = (−1 ·−1+0 ·0, 0 ·−1−(−1) ·0) = (1, 0)
= ‘3:00’.

• 2 · (3/5, 4/5) = (3/5, 4/5) ⊕ (3/5, 4/5) = (3/5 · 4/5 + 4/5 · 3/5, (4/5)2 −
(3/5)2) = (24/25, 7/25).

Having succeeded in constructed a group on a circle, let’s see if we can use
this do construct a group on a ‘circle over a finite field’. Recall that our group,
the set of points on the circle, was given by

{(x, y) ∈ R× R : x2 + y2 = 1}.

So we define set the points on a circle over a finite field Fq to be

Gq = {(x, y) ∈ Fq × Fq : x2 + y2 = 1}.

Can we make a group from Gq like we did with the circle over R? Let’s first
look at a small example.

Example. Represent F7 as F7 = {−3,−2,−1, 0, 1, 2, 3}. Then we can draw
F7 × F7 as

0 1 2 3-3 -2 -1

1

2

3

-3

-2

-1

y

x

and we can draw the ‘circle’

G7 = {(x, y) ∈ F7 × F7 : x2 + y2 = 1}

as

5

0 1 2 3-3 -2 -1

1

2

3

-3

-2

-1

y

x

Now, we can use the group law that we found for the circle over R and check
that it defines a group law for G7, by defining

(x1, y1)⊕ (x2, y2) = (x1y2 + x2y1 mod 7, y1y2 − x1x2 mod 7)

for (x1, y1) and (x2, y2) ∈ G7. Checking that this satisfies the group axioms
(G1)-(G4) is left as an exercise.

Now, we have defined a group (G7,⊕), and in a similar way we can define
a group (Gp,⊕) for any prime p. Now that we have a group, we can do a
Diffie-Hellman key exchange with this group:
Setup:
Alice and Bob publicly agree on a finite field Fp and a point (x, y) such that
x2 + y2 ≡ 1 mod p.
Key exchange:

1. Alice choose a random private key a ∈ Z and Bob choose a random private
key b ∈ Z.

2. Alice computes her public key a · (x, y) := (x, y) ⊕ (x, y) ⊕ · · · ⊕ (x, y) (a
times), and Bob computes his public key b · (x, y).

3. Alice sends Bob a · (x, y) and Bob sends Alice b · (x, y) (over an insecure
channel).

4. Alice computes their shared secret a · (b · (x, y)) = (ab) · (x, y), as does Bob
via b · (a · (x, y)) = (ab) · (x, y).

This key exchange works, but is still susceptible to index calculus-like attacks
due to the simplicity of the group law, so we need to do something slightly

6

cleverer to make a more secure protocol. Next time we will see how to alter this
example to get a group law on an Edwards curve, which is an example of an
elliptic curve.

7

