
Cryptology Fall 2017

Chloe Martindale
TU/e

October 3, 2017

These notes are based on notes by Tanja Lange and Ruben Niederhagen.
The last two weeks we have seen many theoretical constructions to both make
and break cryptosystems. We will now go through an example of the ‘best’ way
to set up a key exchange (at least given what we know so far), for example so
that we can do AES.

We want to compute a shared secret between Alice and Bob using Diffie-
Hellman, for which we first need to choose an construct a finite field. In practise
of course this should be very large (we will see later in the course just how large),
but for now we’ll do a small example.

Example. Let’s construct a finite field of 32 elements. 32=25 is a prime power
so such a field exists, and it will be a 5-dimensional vector space over the modular
group F2 := Z/2Z. Recall that we can represent the finite field of 32 elements
as

F25 = F2[x]/f(x)F2[x],

where f(x) ∈ F2[x] is a monic irreducible polynomial of degree 5. So, to con-
struct our field, all we need to do is find a suitable polynomial f(x). We claim
that

f(x) = x5 + x4 + x3 + x2 + 1 ∈ F2[x]

is irreducible. f(x) has no roots as f(0) = f(1) = 1 6= 0, so f(x) has no
linear factors, but it could have factors of degree 2 or 3. So to check if f(x) is
irreducible we use Rabin’s test. Now

x25 − x = x(x5 + x4 + x3 + x2 + 1)(x26 + x25 + x22 + x19 + x18 + x17 + x16

+ x15 + x13 + x12 + x11 + x7 + x5

+ x3 + x2 + 1),

so f(x)|(x25 −x) and hence (i) of the Rabin test in satisfied. As n = 5 is prime,
for (ii) it suffices to show that gcd(f(x), x2 − x) = 1. As x2 − x = x(x− 1) and
neither 0 nor 1 are roots of f(x) this holds. Hence f(x) is irreducible in F2[x].

Now that we have constructed a finite field Fpn , we should find an element
g ∈ F∗pn such that the subgroup 〈g〉 of F∗pn generated by g is ‘large’ (i.e. O(pn)).

1

Consider F32. The multiplicative group F∗32 has 32− 1 = 31 elements, so every
element g of F∗32 has order dividing 31. Hence, any element except for 1 will
generate the whole of F∗32, so take any element for g (e.g. x mod f(x) or x +
1 mod f(x) etc.).

Before we go ahead and use our newly constructed finite field for a key
exchange, we should check that it’s not susceptible to any of the attacks that
we have seen so far. Recall from last week the ‘Pohlig-Hellman’ attack. This
attack was devastating if the size of the multiplicative group was smooth - that
is, if ` = |〈g〉| had only small prime factors. In our example, ` = 31, so the only
prime factor is O(pn) = O(25), so we are safe against Pohlig-Hellman. (This
example is too small for this to matter, but you get the idea.)

There is a further subletly in using Diffie-Hellman that we did not yet dis-
cuss. When studying the complexity of computing the shared secret key as an
outsider, there is an important distinction between computational and decisional
Diffie-Hellman:

Definition 1. Suppose that g, ga, and gb are known. The computational Diffie-
Hellman problem or CDH is to compute gab.

Definition 2. Suppose that g, ga, gb, gr, where r is a random integer, the
decisional Diffie-Hellman problem or DDH is to decide whether gr = gab.

At first glance the CDH and DDH look like the same problem, but if they
are not, and for some particular group the DDH is much easier than the CDH,
we would want to avoid this group. Let’s try to do the DDH for a small example
without computing discrete logs.

Example. Suppose that in the finite field F19, you’re given that

(g, ga, gb, gr) = (2, 7, 11, 13),

and you want to decide whether 13 = 2ab. What can we detect about a and b
without computing the discrete log? Observe that the order of 2 is 18, so that
for every x ∈ 〈g〉, we know that x9 = (x18)

1
2 ± 1. In particular,

1. If a is even then there exists a′ ∈ Z such that a = 2a′, so

(ga)9 = (g2a
′
)9 = (ga

′
)18 = 1.

2. If a is odd, then 9a is odd (also mod 18), so there does not exist a′ such
that g9a = (gb)18. Therefore (ga)9 6= 1 and hence (ga)9 = −1.

So we can tell if a is even just by looking at the 9th power of ga! We have that

(ga)9 = 79 ≡ 1 mod 19,

so a is even. In particular, this implies that ab is even, so let’s check if r is even
in the same way:

(gr)9 = 139 ≡ −1 mod 19,

so r is odd. Hence r 6= ab, and we have broken DDH!

2

The above example shows that it can be easier to break the DDH than the
CDH. It is difficult to give a general statement such as ‘fields of this form are
easy to break with DDH’, so the best approach is to choose a finite field and a
generator g of a large subgroup and then look at the distribution of

(g, ga, gb, gab) vs. (g, ga, gb, grandom)

and see how they compare. If they’re very different, we say that gab is distin-
guishable.

1 Baby Step Giant Step

One of the best generic algorithms known for solving the discrete logarithm
problem is baby step giant step. Again, we assume that we have a subgroup
〈g〉 ⊆ F∗q of prime order `, and that given h ∈ 〈g〉, we want to find a = logg(h).
The baby step giant step algorithm is as follows:

1. For i from 0 to b
√
`c, compute bi = gi.

2. For j from 0 to b
√
`c+ 1, compute cj = h · g−b

√
`c·j .

3. Find i and j such that bi = cj .

4. Return a = i + b
√
`c · j.

Note that then gi = h · g−b
√
`c·j , so that in particular gi+b

√
`c·j = h. Also,

every a can be written as a = a0 + a1b
√
`c with 0 ≤ a0 ≤ b

√
`c and 0 ≤ a1 ≤

b
√
`c+ 1, so this algorithm will always return an answer. Baby step giant step

takes 2
√
` multiplications and one inversion, which is already much better than

O(`)!

Example. Let’s use the baby step giant step algorithm to compute log9(37) in
F∗101. We have that |〈9〉| = 50, so ` = 50, hence b

√
`c = 7. We first do the ‘baby

step’, that is, we compute bi = 9i for 0 ≤ i ≤ b
√
`c = 7:

i 0 1 2 3 4 5 6 7
3i 1 9 81 22 97 65 80 13

Now we do the ‘giant step’, this is, we compute cj = 37 · 9−7j for j ≥ 0 until we
find a value matching the table above:

j 0 1
cj 37 65

We see from the tables that b5 = c1, that is, that 95 ≡ 37 · 3−10 mod 101, hence
a = 12.

Baby step giant step gives us a large speed-up, but it uses O(
√
`) storage,

which is huge! Another alternative is to use Pollard’s rho method.

3

2 Pollard’s rho method

Again, we assume that we have a subgroup 〈g〉 ⊆ F∗q of prime order `, and that
given h ∈ 〈g〉, we want to find a = logg(h). In Pollard’s rho method, we look
for b, c, b′, c′ ∈ {1, . . . , `} such that

gbhc = gb
′
hc

′
.

This implies that in F∗q ,
gb−b

′
= ga(c

′−c),

hence
b− b′ ≡ a(c′ − c) mod `.

We find such b, c, b′, c′ by doing a pseudo-random walk on a graph with vertices
Gi defined by: G0 = g, b0 = 1, c0 = 0, and

(Gi+1, bi+1, ci+1) =

 (Gi · g, bi + 1, ci) if Gi = 0 mod 3
(Gi · h, bi, ci + 1) if Gi = 1 mod 3

(G2
i , 2bi, 2ci) if Gi = 2 mod 3,

and aborting when we find a loop. Observe that finding a loop means that we
have found some i 6= j such that Gi = Gj , which gives that

gbihci ≡ Gi ≡ Gj ≡ gbjhcj mod `.

This algorithm loops after approximately
√

π
2 ` steps and uses O(1) storage

as we can combine it with a cycle detection algorithm such as Floyd’s cycle
detection algorithm, so is the most common algorithm in practise. Note that
we will see Floyd’s cycle detection algorithm in the lecture on 05/10/2017 but
it is non-examinable!

Example. Let’s compute a := log3(7) in F∗17 using Pollard’s rho method. The
algorithm outputs a list

(3, 1, 0), (9, 2, 0), (10, 3, 0), (2, 3, 1), (4, 6, 2), (11, 6, 3), (2, 12, 6).

The 4th and the 7th items in the list have the same first entry (i.e. G4 = G7),
so we have a loop. Hence

33 · 71 ≡ 312 · 76 ≡ 2 mod 17,

and a ≡ (12− 3)/(1− 6) mod 16, so

a = 11.

All the attacks presented so far do not make any use of any special properties
of the group F∗q or 〈g〉. Such algorithms are called ‘generic algorithms’ as they
work for any group. For groups without special properties these algorithms are
the best (known) to attack the discrete logarithm problem. Next time we will
see a better attack on the discrete logarithm problem for which the group is a
subgroup of F∗q .

4

