
Cryptography, homework sheet 5
Due for 2MMC10: 13 October 2016, 10:45

and for Mastermath: 17 November 2016, 10:45 by email to crypto.course@tue.nl

Team up in groups of two or three to hand in your homework. We do not have capacity to
correct all homeworks individually. Do not email Tanja your homework or put homework in
mailboxes.
You may use computer algebra systems such as mathematica, gp, or sage or program in C,
Java, or Python. Please submit your code if any) as part of your homework. If you do,
make sure that your programs compile and run correctly; my students will not debug your
programs. The program should also be humanly readable.

1. Majordomo is a program that manages Internet mailing lists. If you send a message
to majordomo@foodplus.com saying subscribe recipes, Majordomo will add you to
the recipes mailing list, and you will receive several interesting recipes by e-mail every
day.

It is easy to forge mail. You can subscribe a victim, let’s say God@heaven.af.mil, to
the recipes mailing list, and thousands more mailing lists, by sending fake subscription
requests to Majordomo. God@heaven.af.mil will then be flooded with mail.

Majordomo 1.94, released in October 1996, attempts to protect subscribers as follows.
After it receives your subscription request, it sends you a confirmation number. To
complete your subscription, you must send a second request containing the confirmation
number.

Majordomo 1.94 generates confirmation numbers as follows. There is a function h that
changes strings to numbers. The recipes mailing list has a secret string k. The
confirmation number for an address a is h(ka). For example, if the secret string
is ossifrage, and the address is God@heaven.af.mil, the confirmation number is
h(ossifrageGod@heaven.af.mil).

The function h produces a 32-bit result, computed as follows. Start with 0. Add the
first byte of the string. Rotate left 4 bits. Add the next byte of the string. Rotate left
4 bits. Continue adding and rotating until the end of the string.

Explain how to subscribe God@heaven.af.mil to the recipes mailing list despite this
protection, and explain what Majordomo 1.94 should have done.

2. (No points for this exercise, but do it anyways)
Last month a bug was found in Signal for Android which meant that in some cases
the MAC was over a shorter part of the message, allowing an attacker to append data
to a message. More specifically, this bug applied to attachments and came from an
error in the code taking a 64-bit value for a 32-bit one. The part that makes this
relevant for 2MMC10 is that the implementation used AES in CBC mode. Please read
https://pwnaccelerator.github.io/2016/signal-part2.html.

3. Here is a toy version of a Wegman-Carter message authentication with which A and
B can authenticate t messages: Fix a prime p, e.g. p = 1000003. Randomly generate
integers r, s1, s2, . . . , st ∈ {0, 1, 2, . . . 1000002}. These values are the shared secrets; r is
the overall secret and the si are per message secrets.

To authenticate the i-th message mi the sender expresses mi in base p as mi = mi,0 +
mi,1p + mi,2p

2 + ... + mi,np
n and computes the authenticator as

a = mi,0r + mi,1r
2 + mi,2r

3 + ... + mi,nr
n+1 + si mod p.

https://pwnaccelerator.github.io/2016/signal-part2.html


For simplicity we will do i = 1 and omit the extra indices. Compute the authenticator
for m = 454356542435979283475928437, r = 483754, s = 342534.

4. Use the schoolbook version of Pollard’s rho method to attack the discrete logarithm
problem given by g = 3, h = 245 in IF∗

1013, i.e. find an integer 0 < a < 1012 such that
h = ga, using the ti and ri (the twice as fast walk) as defined in class (aand repeated
here). Let t0 = g, a0 = 1, and b0 = 0 and define

ti+1 =


ti · g
ti · h
t2i

, ai+1 =


ai + 1
ai
2ai

, bi+1 =


bi
bi + 1
2bi

for ti ≡


0 mod 3
1 mod 3
2 mod 3

,

where one takes ti as an integer. The twice as fast walk has ri = t2i.

The walk could start at any t0 = ga0hb0 for known a0 and b0 – but then the homework
would be harder to correct.

5. Use factor base F = {2, 3, 5, 7, 11, 13} to solve the DLP h = 281, g = 2, in IF∗
1019.

I.e. pick random powers of g = 2, check whether they factor into products of powers
of 2,3,5,7,11, and 13; if so, add a relation to a matrix. The columns of the matrix
correspond to the discrete logs of 2,3, 5,7,11, and 13. Once you have 6 rows try to solve
the matrix; note that these computations take place modulo the group order 1018. It
might be that some of the rows are linearly dependent, in that case you need to generate
another relation. Once you have all discrete logs of the primes in the factor base, check
whether h is smooth and if not find a h/gi (for some i) which is smooth.

E.g. 2291 ≡ 52 mod 1019; over the integers 52 = 22 · 13, so we incluclude the relation
291 ≡ 2a2 + a13 mod 1018. Note that you can run into difficulties inverting modulo
1018 since it is not prime. E.g. 2658 ≡ 729 mod 1019; over the integers 729 = 36,
so we incluclude the relation 658 ≡ 6a3 mod 1018 but 6 is not invertible modulo 1018
and we can only determine a3 ≡ 449 mod 509 and need to test whether a3 = 449 or
a3 = 449 + 509. Here 2449 ≡ 1016 mod 1019 and 2449+509 ≡ 3 mod 1019, thus a3 = 958.

Hint: if you’re using Pari-GP you’ll find

factor(lift(Mod(2^i,p)))

a usefull command.


