
Cryptography, homework sheet 3
Due for 2MMC10: 29 September 2016, 10:45

and for Mastermath: 20 October 2016, 10:45 by email to crypto.course@tue.nl

Team up in groups of two or three to hand in your homework. We do not have capacity to
correct all homeworks individually. Do not email Tanja your homework or put homework in
mailboxes.
You may use computer algebra systems such as mathematica, gp, or sage or program in C,
Java, or Python. Please document your steps. You now may write the result of ab mod n in
one go, without stating intermediate results – but it should be clear what computation you
did.

1. 3 ∈ IF∗1013 generates a group of order 1012, so it generates the whole multiplicative group
of the finite field.

Alice’s public key is ha = 224. Use ElGamal encryption to encrypt the messge m = 42
to her using the “random” value r = 654.

2. You find two signatures made by Alice. You know that she is using the ElGamal
signature scheme over IF2027 and that the order of the generator is n = 1013. The
signatures are for h(m1) = 345 and h(m2) = 567 and are given by (r1, s1) = (365, 448)
and (r2, s2) = (365, 969). Compute (a candidate for) Alice’s long-term secret a based
on these signatures, i.e. break the system.

3. 3 ∈ IF∗1013 generates a group of order 1012 = 4 · 11 · 23. Solve the discrete logarithm
problem g = 3, h = 321 by using the Pohlig-Hellman attack, i.e. find an integer 0 < a <
1012 such that h = ga by computing first a modulo 2, 4, 11, and 23 and then computing
a using the Chinese Remainder Theorem.

4. 3 ∈ IF∗1013 generates a group of order 1012, so it generates the whole multiplicative
group of the finite field. Solve the discrete logarithm problem g = 3, h = 224 using the
Baby-Step Giant-Step algorithm (see below).

The Pohlig-Hellman attack attack works in any group and is a way to reduce the reduce the
hardness of the DLP to the hardness of the DLP in subgroups of prime order. In particular
you’ll see in the exercise that it works against the DLP in IF∗1013 by solving DLPs in groups
of size 2, 11, and 23. Here is the general description:
Let G be a cyclic group generated by g and let the challenge be to find logg h = a. Let the
group order n factor as n =

∏r
i=1 p

ei
i where pi 6= pj for i 6= j. Then a can be computed from

the information

a ≡ a1 mod pe11
a ≡ a2 mod pe22
a ≡ a3 mod pe33

...

a ≡ ar mod perr

by using the Chinese remainder theorem. This is because the peii are coprime and their
product is n. So, if one can find the DL modulo all peii one can compute the entire DL.
Put ni = n/peii . Since g has order n the element gi = gni has order peii . The element hi = hni

is in the subgroup generated by gi and it holds that hi = gaii , where ai ≡ a mod peii .



E.g. IF∗16 = 〈g〉 has 15 elements, so one can first solve the DLP h = ga modulo 3 and then
modulo 5. For such small numbers one can simply compute h5 and compare it to 1, g5, and g10

to find whether a is equivalent to 0, 1, or 2 modulo 3. Then one compares h3 to 1, g3, g6, g9,
and g12 to see whether a is congruent to 0, 1, 2, 3, or 4 modulo 5.
The same approach works also for IF∗17 which has 16 = 24 elements – but here one can do
much better! Write a = a0 + a12 + a22

2 + a32
3. Then h8 is either equal to 1 or to −1 = g8

depending on whether a0 is 0 or 1. Once that result is known we can compare (h/ga0)4 with
1 and −1 to find a1 etc. So we can solve a much smaller DLP. Instead of going for a modulo
peii at once we can first obtain a modulo pi, then modulo p2i , then modulo p3i , etc. till peii by
each time solving a DLP in a group of size pi.
In general, for each pi in the factorization of n one does the following:

1. Put h′ = h, ai,−1 = 0

2. for j = 0 to ei − 1

(a) put h′ = h/(gai,j−1p
j−1

) //using precomputed g−1

(b) solve the DLP of order pi for ai,j = loggn/pi (h
′)n/p

j+1
i .

and then combine the ai,j to ai =
∑ej−1

j=0 ai,jp
j
i and then those ai mod peii (using CRT) to

a mod n.

Numerical examples:
IF∗11 = 〈2〉, find a so that 3 = 2a. So g = 2 and h = 3. Compute n1 = 10/2 = 5,
gn1 = 25 = −1, and hn1 = 35 = 1 to see that a ≡ 0 mod 2. Then compute n2 = 10/5 = 2,
gn2 = 22 = 4, g2n2 = 24 = 5, g3n2 = 26 = 9, and g4n2 = 28 = 3 and compare that to
hn2 = 32 = 9 to see that a ≡ 3 mod 5. These two congruences imply that k = a and indeed
g8 = h.
IF∗17 = 〈3〉, find a so that 7 = 3a. So g = 3 and h = 7. In this example we will obtain a
one bit at a time. First compare h8 = 78 = −1 to 1 and −1 to see that a ≡ 1 mod 2. Then
compute h/g = 8 and then (h/g)4 = −1, so also the next bit is 1 and we see a ≡ 3 mod 4.
Then compute h/g3 = 16 and then (h/g3)2 = 1 to see that the next bit is 0, so a ≡ 3 mod 8.
Finally, since h/g3 = 16 = −1 we see that the highest bit is 1, so a ≡ 11 mod 16 and indeed
311 = 7. This solved the DLP in IF∗17 with just 4 very easy computations and comparisons.
So computing DLs in fields IFp with p = 2r + 1 is easy.

The Baby-Step Giant-Step (BSGS) method works in any cyclic group, so it can be used as
a subroutine to the Pohlig-Hellman attack. Let ` (one of the pi above) be the group order
and put m = b

√
`c. Then the discrete logarithm a can be written as a = a0 + a1m with

a0 ∈ [0,m − 1]. The BSGS algorithm computes all powers gi for integers i ∈ [0,m − 1] and
then iteratively computes h/(gjm) for j and checks whether this value is among the initially
computes powers of g. The small powers of g are the baby steps, the powers h/(gjm) are the
giant steps. There must exist a match because h/(ga1m) = ga0+a1m−a1m = ga0 is among the
precomputed values and will be found for j = a1 ≤ d

√
`e.

To make your computations more efficient you should sort the results from the baby steps
(but remember which i belongs to which value) and compute the h/(gjm) by first computing
d = g−m (using 1 multiplication and one inversion, starting from the last of the baby steps)
and then checking h, h′ = h · d, h′ = h′ · d, . . . in succession. In summary the attack takes at
most 2m + 1 multiplications and 1 inversion.


