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September 10, 2015

Finite Fields (continued)
Recap:

Definition (field). A set K is a field with respect to 4+ and -, denoted (K, +,-), if
i) (K, +) is an abelian group (closure, associativity, identity, inverse, commutative),
ii) (K*,-) is and abelian group, where K* = K \ {0}, and
iii) the distributive law holds in K, i.e.,
a-(b+c)=a-b+a-cforall abceK
Example (GF(4)). Let’s inspect GF(4) = ({l, @, %, A}, +,):
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We have an identity and an inverse for each + and -; both operations are commutative; we have
closure under both operations; we have associativity:

At+t(k+@)=a+a=01
(At+tk)+re=0+0=01H

B @, %, and A are not convenient for the representation of field elements, we want something
that allows us to compute + and - easily.

Last time, we figured out that we can use Z/,z to represent the elements of the prime subfield
of a field K and that K is a vector space over the prime field. So let’s write

o= ({(0)-(-(0)-()) ) - w00

Use the basis vectors a1 = (1) and ag = (1) or 1 and a in order to represent each element:
0

<0>_O‘O‘2+O‘O‘1 — 0-a+0-1=0

0

<1>=0 ar+1l-ay — 0O0-a+1-1=1
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<0>:1‘a2+0 ap +— 1l-a+0-1=a

1

():1&2—1—1 ap — l-a+1-1=a+1



This allows us to compute the addition table:

+ a a+1

0 1 1 a a+1
0 0 1 a a+1
1 1 a a+1
1 1 0 a+1 a
a a a+1 1
a a atl 0 1 a+1|a+1 1 a
a+1l|a+1 a 1 0

But the vector space does not help as with the multiplication table — because there is no vector-
vector multiplication.

Let’s try another field GF(8) with 8 = 23 elements, thus a basis a1 = 1, ag = a, ag = b. If we
use a® = 1, we run into the same problems as before; choosing a® = a + 1 constructs the same
field as before — no connection with b. So let’s try a® = b; then a-(a+1) = a®?+a = b+a. Again
several options for a-b. Obviously one can not choose a-b = a, b, or b4+a. Choosing a-b = 1 gives
(a+1)(b+a+1)=a-b+a*+a+b+a+1=1+b+b+1=0— which is not possible in a field.
Similarly a-b = a+b+1 is excluded by (a+1)-(b+1) =a-b+a+b+1=a+b+1+a+b+1=0.
Trya-b=a+1:

a-(b+1)=a-b+a=a+1l+a=1;

a-(b+a)=a-b+a®>=(a+1)+b

a-(b+a+1l)=---=a+1+b+a=>b+1,

(a+1)2=a?>+1=b+1;
(a+1)b=a-b+b=(a+1)+0b
(a+1)(b+1)=a-b+a+b+1l=(a+1)+a+b+1=0b;
(a+1)(b+a)=a-b+a’>+b+a=(a+1)+b+b+a=1;
~ b =ad’-b=a-(a-b)=a-(a+1)=a’+a=b+a;
~(b+1)(b+a)=b+ba+b+a=(b+a)+(a+1)+b+ta=a+1
. 1 a a+1 b b+1 b+a b+a+1
1 1 a a+1 b b+1 b+a b+a+1
a a b b+a a+1 1 b+a+1 b+1
a+1 a+1 b+a b+1 a+b+1 b 1 a
b b a+1 a+b+1 b+a a b+1 1
b+1 b+1 1 b a b+a+1 a+1 b+a
b+a b+a b+a+1 1 b+1 a+1 a b
b+a+1|b+a+1 b+1 a 1 b+a b a+1

How can we get this “automatically”?
How do we compute a - b = ¢ without a lookup table?

The ides is to use a polynomial ring to represent the field elements. A polynomial ring also spans
a vector space — but in contrast to the vector space, the multiplication of polynomials is well
defined.

Polynomial ring over field K

K[:c]—{zn:aixi | nEN,aiEK}. f € K[z, f:Zfzxz

i=1

Let n be the largest integer with f,, # 0 then deg(f) = n, leading coefficient LC(f) = f,,, leading
term LT(f) = fpa™.



Definition (irreducible). A polynomial f € K|z is called irreducible if deg(f) > 1 and it cannot
be written as a product of polynomials of lower degree over the same field, i.e., if u(x)/f(z) then
u(z) € K or u(x) = f(x).

Otherwise f is reducible. Note that this depends on the field K.

Example.
e 72— 1= (x+1)(z — 1) is reducible in R[x].
e 74+ 27+ 1= (224 1)? in R[] has no roots but is reducible.
e 22 + 1 is irreducible in R[z] but reducible in C[z] by (x —i)(z + i).

e 23 + 622 + 4 is irreducible in Z/77.

The main choice we made in constructing GF(8) was how to write a - b in terms of the other
elements; b = a® and so the question was how to represent a-b = a3 in terms of 1, a, and a?. We
chose a® = a+1 and then all operations followed by using this equality. This polynomial, a®+a+1
does not factor over GF(2); other choices we considered, e.g., a® + 1 do factor and it was exactly
by considering these factors, e.g., (a + 1) and (a? + a + 1) that we derived contradictions, e.g.,
(a+1)-(a®+a+1) = a®+1 = 0 (using @® = 1). In the end we worked in GF(2)[al/ (a3+a+1)GF2)[a)
— the polynomial ring over GF(2) modulo the irreducible polynomial a® + a + 1.

Example. Compute a - (a® + a) and (a + 1) - (a® 4+ a) in GF(8) using the irred. polynomial
a®+a+1:

a-(a®>+a) =a® + d? (a+1)-(a*+a)=0d’+a
1 1

a3+a+1) a’ + a? a3+a—|—1) a®+a
—(a®+a+1) —(a®*+a+1)

a?+a+1 1

In general, this construction gives a finite field:
Let f be a monic irreducible polynomial of degree n over GF(p). We define addition and multi-
plication on

n—1
GF(0)[7]/ t(x)aF(p)a] = {Z a;ix' | a; € GF(p)}
=0

as addition and multiplication in GF(p)[z] followed by reduction modulo f(x).

The additive structure forms a group; this matches the vectorspace construction using basis 1, z,
22, ..., 2" 1. Multiplication of two elements gives a polynomial of degree < n (after reduction),
associativity and commutativity are inherited from GF(p)[z], the neutral element is 1 — so the

question is whether every element # 0 is invertible.

Let g = Z?:_ol gix' € GF(p)[z]/ f(x)aF(p)a)- Since f is irreducible, ged(f,g) = 1 and XGCD
computes polynomials h and [ with 1 = g-h+ f -1, thus h = ¢g~' mod f. This procedure works
for any g — so the multiplicative structure forms a group, too. The distributive laws hold as in
GF(p)[x] — so we have a field with p™ elements, as soon as we have an irreducible polynomial
of degree n over GF(p).



Example. The polynomial f = 23 4+ 22 + 1 is irreducible over the field Fs.
What is the inverse of 22 + 1 over Fo modulo f?

z+1 P+’ +1=(P+D)(z+1)+x
?+1) B+t +1 s )
_ (23 + ) (@@ +z+ 1)+ (@ +1)(z+1)=
>+ ar+1
- (@41
X
x Pl=z-z+1
T) 2 +1 9
_ 22 o+ 1+z-x=1
1
1=’ +2?+1) - 7+ (a? +1) - ? @2+ 1) (a2 +z+1) =2t + 23+ 2+ +1
1—(:132—1—1)—1-:1: T
(a; +1) + [(az +a: +1) (a: +1)(:c+1)]x .
(m + 22 +1) z+ (22 +1) (w —i—l)(:l:—i—l)x (z* + 23 + 2)
(:U +224+ 1) 2+ (@2 + 1)1+ (z+1) 2] 1
= (2’

) 1)
P+ 1) o+ (2 + 1)@+ +1)
Alternative approach:

We know that a?" = a and a?"~! = 1 for a € GF(p") (Lagrange’s Theorem).
Thus a-a?" 2 = a?" 1 = 1.

So we can compute the inverse of (2% + 1) as (22 4+ 1)% in GF(8):

(22 +1)° = x2+14( )

L R LR e

B+’ +1) e+ 8+t +1
(21?2 4 21 4 29)

|

- (1t + 210 4 28)

224+r+1

How do we find irreducible polynomials?
Pick a random polynomial and check if it is irreducible using “Rabin’s test of irreducibility” (or
a computer algebra system of your choice).



