2MMC10 Cryptology – Fall 2015

September 10, 2015

Finite Fields (continued)

Recap:

Definition (field). A set K is a *field* with respect to + and \cdot , denoted $(K, +, \cdot)$, if

- i) (K, +) is an abelian group (closure, associativity, identity, inverse, commutative),
- ii) (K^*, \cdot) is and abelian group, where $K^* = K \setminus \{0\}$, and
- iii) the distributive law holds in K, i.e., $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in K$

Example (GF(4)). Let's inspect GF(4) = ($\{\blacksquare, \bullet, \bigstar, \blacktriangle\}, +, \cdot$):

+		\bullet	\star				+	
			+			•	*	
_	_	Ě	<u> </u>	-			*	
\bullet				\star	_	_		
+	+				×	×		•
~		_	_	_				*
		*	\bullet		_	-	•	\sim

We have an identity and an inverse for each + and \cdot ; both operations are commutative; we have closure under both operations; we have associativity:

 $\mathbf{A} + (\mathbf{\bigstar} + \mathbf{\bullet}) = \mathbf{A} + \mathbf{A} = \mathbf{I}$ $(\mathbf{A} + \mathbf{\bigstar}) + \mathbf{\bullet} = \mathbf{\bullet} + \mathbf{\bullet} = \mathbf{I}$

 \blacksquare , \bullet , \bigstar , and \blacktriangle are not convenient for the representation of field elements, we want something that allows us to compute + and \cdot easily.

Last time, we figured out that we can use $\mathbb{Z}/_{p\mathbb{Z}}$ to represent the elements of the prime subfield of a field K and that K is a vector space over the prime field. So let's write

$$GF(4) = \left(\left\{ \begin{pmatrix} 0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix} \right\}, +, \cdot \right) = (\{0, 1, a, a+1\}, +, \cdot).$$

Use the basis vectors $\alpha_1 = \begin{pmatrix} 0\\1 \end{pmatrix}$ and $\alpha_2 = \begin{pmatrix} 1\\0 \end{pmatrix}$ or 1 and a in order to represent each element:
 $\begin{pmatrix} 0\\2 \end{pmatrix} = 0 \cdot \alpha_2 + 0 \cdot \alpha_1 \quad \longmapsto \quad 0 \cdot a + 0 \cdot 1 = 0$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \cdot \alpha_2 + 0 \cdot \alpha_1 \quad \longmapsto \quad 0 \cdot a + 0 \cdot 1 = 0 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0 \cdot \alpha_2 + 1 \cdot \alpha_1 \quad \longmapsto \quad 0 \cdot a + 1 \cdot 1 = 1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1 \cdot \alpha_2 + 0 \cdot \alpha_1 \quad \longmapsto \quad 1 \cdot a + 0 \cdot 1 = a \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 \cdot \alpha_2 + 1 \cdot \alpha_1 \quad \longmapsto \quad 1 \cdot a + 1 \cdot 1 = a + 1$$

1

This allows us to compute the addition table:

+	0	1	a	a+1		1	a	$a \perp 1$
0	0	1	a	a+1		1	u	
1	1	Ο	$a \perp 1$	a	1	1	a	a+1
T	1	0	u + 1	u 1	a	a	a+1	1
a	a	a+1	0	1	$a \perp 1$	$a \perp 1$	1	a
a+1	a+1	a	1	0	$u \pm 1$	u + 1	T	u

But the vector space does not help as with the multiplication table – because there is no vector-vector multiplication.

Let's try another field GF(8) with $8 = 2^3$ elements, thus a basis $\alpha_1 = 1$, $\alpha_2 = a$, $\alpha_3 = b$. If we use $a^2 = 1$, we run into the same problems as before; choosing $a^2 = a + 1$ constructs the same field as before — no connection with b. So let's try $a^2 = b$; then $a \cdot (a+1) = a^2 + a = b + a$. Again several options for $a \cdot b$. Obviously one can not choose $a \cdot b = a$, b, or b + a. Choosing $a \cdot b = 1$ gives $(a+1)(b+a+1) = a \cdot b + a^2 + a + b + a + 1 = 1 + b + b + 1 = 0$ — which is not possible in a field. Similarly $a \cdot b = a + b + 1$ is excluded by $(a+1) \cdot (b+1) = a \cdot b + a + b + 1 = a + b + 1 + a + b + 1 = 0$. Try $a \cdot b = a + 1$:

$$\begin{array}{c} -a \cdot (b+1) = a \cdot b + a = a + 1 + a = 1; \\ -a \cdot (b+a) = a \cdot b + a^2 = (a+1) + b; \\ -a \cdot (b+a+1) = \cdots = a + 1 + b + a = b + 1; \\ -(a+1)^2 = a^2 + 1 = b + 1; \\ -(a+1)b = a \cdot b + b = (a+1) + b; \\ -(a+1)(b+1) = a \cdot b + a + b + 1 = (a+1) + a + b + 1 = b; \\ -(a+1)(b+a) = a \cdot b + a^2 + b + a = (a+1) + b + b + a = 1; \\ -b^2 = a^2 \cdot b = a \cdot (a \cdot b) = a \cdot (a+1) = a^2 + a = b + a; \\ -(b+1)(b+a) = b^2 + ba + b + a = (b+a) + (a+1) + b + a = a + 1 \\ - \cdots \end{array}$$

•	1	a	a+1	b	b+1	b+a	b+a+1
1	1	a	a+1	b	b+1	b+a	b+a+1
a	a	b	b+a	a+1	1	b+a+1	b+1
a+1	a+1	b+a	b+1	a+b+1	b	1	a
b	b	a+1	a+b+1	b+a	a	b+1	1
b+1	b+1	1	b	a	b + a + 1	a+1	b+a
b+a	b+a	b + a + 1	1	b+1	a+1	a	b
b + a + 1	b + a + 1	b+1	a	1	b+a	b	a+1

How can we get this "automatically"?

How do we compute $a \cdot b = c$ without a lookup table?

The ides is to use a polynomial ring to represent the field elements. A polynomial ring also spans a vector space – but in contrast to the vector space, the multiplication of polynomials is well defined.

Polynomial ring over field K

$$K[x] = \left\{ \sum_{i=1}^{n} a_i x^i \mid n \in \mathbb{N}, a_i \in K \right\}. \quad f \in K[x], \ f = \sum f_i x_i.$$

Let n be the largest integer with $f_n \neq 0$ then $\deg(f) = n$, leading coefficient $LC(f) = f_n$, leading term $LT(f) = f_n x^n$.

Definition (irreducible). A polynomial $f \in K[x]$ is called *irreducible* if $\deg(f) \ge 1$ and it cannot be written as a product of polynomials of lower degree over the same field, i.e., if u(x)/f(x) then $u(x) \in K$ or u(x) = f(x).

Otherwise f is *reducible*. Note that this depends on the field K.

Example.

- $x^2 1 = (x+1)(x-1)$ is reducible in $\mathbb{R}[x]$.
- $x^4 + 2x + 1 = (x^2 + 1)^2$ in $\mathbb{R}[x]$ has no roots but is reducible.
- $x^2 + 1$ is irreducible in $\mathbb{R}[x]$ but reducible in $\mathbb{C}[x]$ by (x i)(x + i).
- $x^3 + 6x^2 + 4$ is irreducible in $\mathbb{Z}/_{7\mathbb{Z}}$.

The main choice we made in constructing GF(8) was how to write $a \cdot b$ in terms of the other elements; $b = a^2$ and so the question was how to represent $a \cdot b = a^3$ in terms of 1, a, and a^2 . We chose $a^3 = a+1$ and then all operations followed by using this equality. This polynomial, a^3+a+1 does not factor over GF(2); other choices we considered, e.g., $a^3 + 1$ do factor and it was exactly by considering these factors, e.g., (a + 1) and $(a^2 + a + 1)$ that we derived contradictions, e.g., $(a+1) \cdot (a^2+a+1) = a^3+1 = 0$ (using $a^3 = 1$). In the end we worked in GF(2)[a]/ (a^3+a+1) GF(2)[a] — the polynomial ring over GF(2) modulo the irreducible polynomial $a^3 + a + 1$.

Example. Compute $a \cdot (a^2 + a)$ and $(a + 1) \cdot (a^2 + a)$ in GF(8) using the irred. polynomial $a^3 + a + 1$:

$$a \cdot (a^{2} + a) = a^{3} + a^{2} \qquad (a + 1) \cdot (a^{2} + a) = a^{3} + a$$
$$a^{3} + a + 1 \overline{)} \qquad a^{3} + a^{2} \qquad a^{3} + a + 1 \overline{)} \qquad \underline{-(a^{3} + a + 1)} \qquad \underline{-(a^$$

In general, this construction gives a finite field:

Let f be a monic irreducible polynomial of degree n over GF(p). We define addition and multiplication on

$$\operatorname{GF}(p)[x]/_{f(x)\operatorname{GF}(p)[x]} = \left\{ \sum_{i=0}^{n-1} a_i x^i \mid a_i \in \operatorname{GF}(p) \right\}$$

as addition and multiplication in GF(p)[x] followed by reduction modulo f(x).

The additive structure forms a group; this matches the vector space construction using basis 1, x, x^2, \ldots, x^{n-1} . Multiplication of two elements gives a polynomial of degree < n (after reduction), associativity and commutativity are inherited from GF(p)[x], the neutral element is 1 — so the question is whether every element $\neq 0$ is invertible.

Let $g = \sum_{i=0}^{n-1} g_i x^i \in \operatorname{GF}(p)[x]/_{f(x)\operatorname{GF}(p)[x]}$. Since f is irreducible, $\operatorname{gcd}(f,g) = 1$ and XGCD computes polynomials h and l with $1 = g \cdot h + f \cdot l$, thus $h \equiv g^{-1} \mod f$. This procedure works for any g — so the multiplicative structure forms a group, too. The distributive laws hold as in $\operatorname{GF}(p)[x]$ — so we have a field with p^n elements, as soon as we have an irreducible polynomial of degree n over $\operatorname{GF}(p)$.

Example. The polynomial $f = x^3 + x^2 + 1$ is irreducible over the field \mathbb{F}_2 . What is the inverse of $x^2 + 1$ over \mathbb{F}_2 modulo f?

$$\begin{array}{rcl}
x^{2}+1 & x^{2}+1 & x^{3}+x^{2}+1 \\
& & x^{3}+x^{2}+1 & (x^{3}+x) \\
& & - & (x^{3}+x) \\
& & - & (x^{2}+1) \\
& & - & (x^{2}+1) \\
& & x
\end{array}$$

$$\begin{array}{rcl}
x^{3}+x^{2}+1 & = (x^{2}+1)(x+1) + x \\
& (x^{3}+x^{2}+1) + (x^{2}+1)(x+1) & = x \\
& & (x^{3}+x^{2}+1) + (x^{2}+1)(x+1) & = x \\
& & x^{2}+1 & = x \cdot x + 1 \\
& & x^{2}+1 + x \cdot x & = 1
\end{array}$$

$$\begin{split} 1 &= (x^3 + x^2 + 1) \cdot ? + (x^2 + 1) \cdot ? \\ 1 &= (x^2 + 1) + x \cdot x \\ &= (x^2 + 1) + \left[(x^3 + x^2 + 1) + (x^2 + 1)(x + 1) \right] x \\ &= (x^2 + 1) + (x^3 + x^2 + 1) x + (x^2 + 1)(x + 1) x \\ &= (x^3 + x^2 + 1) x + (x^2 + 1) + (x^2 + 1)(x + 1) x \\ &= (x^3 + x^2 + 1) x + (x^2 + 1) \left[1 + (x + 1) x \right] \\ &= (x^3 + x^2 + 1) x + (x^2 + 1)(x^2 + x + 1) \end{split}$$

$$\begin{aligned} x^3 + x^2 + 1 \frac{x^3 + x^3 + x + 1}{x^3 + x^3 + x^2 + 1} \\ &= (x^3 + x^2 + 1) x + (x^2 + 1)(x^2 + x + 1) \end{aligned}$$

Alternative approach:

We know that $a^{p^n} = a$ and $a^{p^n-1} = 1$ for $a \in GF(p^n)$ (Lagrange's Theorem). Thus $a \cdot a^{p^n-2} = a^{p^n-1} = 1$.

So we can compute the inverse of $(x^2 + 1)$ as $(x^2 + 1)^6$ in GF(8):

$$(x^{2}+1)^{6} = (x^{2}+1)^{4} (x^{2}+1)^{2}$$

$$= ((x^{2}+1)^{2})^{2} (x^{2}+1)^{2}$$

$$= (x^{4}+1)^{2} (x^{4}+1)$$

$$= (x^{8}+1) (x^{4}+1)$$

$$= x^{12} + x^{8} + x^{4} + 1$$

$$x^{3} + x^{2} + 1) \xrightarrow{x^{9} + x^{8} + x^{7} + x^{4} + x^{3} + x^{2} + x}{x^{12} + x^{8} + x^{4} + 1}$$

$$- (x^{12} + x^{11} + x^{9})$$

$$x^{2} + x^{4} + 1$$

$$- (x^{11} + x^{10} + x^{8})$$

$$x^{2} + x + 1$$

How do we find irreducible polynomials?

Pick a random polynomial and check if it is irreducible using "Rabin's test of irreducibility" (or a computer algebra system of your choice).