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Finite Fields (continued)

Recap:

Definition (field). A set K is a field with respect to + and ·, denoted (K,+, ·), if
i) (K,+) is an abelian group (closure, associativity, identity, inverse, commutative),

ii) (K∗, ·) is and abelian group, where K∗ = K \ {0}, and
iii) the distributive law holds in K, i.e.,

a · (b+ c) = a · b+ a · c for all a, b, c ∈ K

Example (GF(4)). Let’s inspect GF(4) = ({�, ,F,N},+, ·):

+ �  F N
� �  F N
  � N F
F F N �  
N N F  �

·  F N
  F N
F F N  
N N  F

We have an identity and an inverse for each + and ·; both operations are commutative; we have
closure under both operations; we have associativity:

N+ (F+ ) = N+ N = �
(N+F) + =  + = �

�,  , F, and N are not convenient for the representation of field elements, we want something
that allows us to compute + and · easily.

Last time, we figured out that we can use Z/pZ to represent the elements of the prime subfield
of a field K and that K is a vector space over the prime field. So let’s write

GF(4) =

({(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)}
,+, ·

)
= ({0, 1, a, a+ 1},+, ·).

Use the basis vectors α1 =

(
0
1

)
and α2 =

(
1
0

)
or 1 and a in order to represent each element:(

0
0

)
= 0 · α2 + 0 · α1 7−→ 0 · a+ 0 · 1 = 0(

0
1

)
= 0 · α2 + 1 · α1 7−→ 0 · a+ 1 · 1 = 1(

1
0

)
= 1 · α2 + 0 · α1 7−→ 1 · a+ 0 · 1 = a(

1
1

)
= 1 · α2 + 1 · α1 7−→ 1 · a+ 1 · 1 = a+ 1
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This allows us to compute the addition table:

+ 0 1 a a+ 1

0 0 1 a a+ 1
1 1 0 a+ 1 a
a a a+ 1 0 1

a+ 1 a+ 1 a 1 0

· 1 a a+ 1

1 1 a a+ 1
a a a+ 1 1

a+ 1 a+ 1 1 a

But the vector space does not help as with the multiplication table – because there is no vector-
vector multiplication.

Let’s try another field GF(8) with 8 = 23 elements, thus a basis α1 = 1, α2 = a, α3 = b. If we
use a2 = 1, we run into the same problems as before; choosing a2 = a + 1 constructs the same
field as before — no connection with b. So let’s try a2 = b; then a ·(a+1) = a2+a = b+a. Again
several options for a ·b. Obviously one can not choose a ·b = a, b, or b+a. Choosing a ·b = 1 gives
(a+1)(b+a+1) = a · b+a2+a+ b+a+1 = 1+ b+ b+1 = 0 — which is not possible in a field.
Similarly a ·b = a+b+1 is excluded by (a+1) ·(b+1) = a ·b+a+b+1 = a+b+1+a+b+1 = 0.
Try a · b = a+ 1:

– a · (b+ 1) = a · b+ a = a+ 1 + a = 1;
– a · (b+ a) = a · b+ a2 = (a+ 1) + b;
– a · (b+ a+ 1) = · · · = a+ 1 + b+ a = b+ 1;
– (a+ 1)2 = a2 + 1 = b+ 1;
– (a+ 1)b = a · b+ b = (a+ 1) + b;
– (a+ 1)(b+ 1) = a · b+ a+ b+ 1 = (a+ 1) + a+ b+ 1 = b;
– (a+ 1)(b+ a) = a · b+ a2 + b+ a = (a+ 1) + b+ b+ a = 1;
– b2 = a2 · b = a · (a · b) = a · (a+ 1) = a2 + a = b+ a;
– (b+ 1)(b+ a) = b2 + ba+ b+ a = (b+ a) + (a+ 1) + b+ a = a+ 1

– . . .

· 1 a a+ 1 b b+ 1 b+ a b+ a+ 1

1 1 a a+ 1 b b+ 1 b+ a b+ a+ 1
a a b b+ a a+ 1 1 b+ a+ 1 b+ 1

a+ 1 a+ 1 b+ a b+ 1 a+ b+ 1 b 1 a
b b a+ 1 a+ b+ 1 b+ a a b+ 1 1

b+ 1 b+ 1 1 b a b+ a+ 1 a+ 1 b+ a
b+ a b+ a b+ a+ 1 1 b+ 1 a+ 1 a b

b+ a+ 1 b+ a+ 1 b+ 1 a 1 b+ a b a+ 1

How can we get this “automatically”?
How do we compute a · b = c without a lookup table?

The ides is to use a polynomial ring to represent the field elements. A polynomial ring also spans
a vector space – but in contrast to the vector space, the multiplication of polynomials is well
defined.

Polynomial ring over field K

K[x] =

{
n∑

i=1

aix
i | n ∈ N, ai ∈ K

}
. f ∈ K[x], f =

∑
fixi.

Let n be the largest integer with fn 6= 0 then deg(f) = n, leading coefficient LC(f) = fn, leading
term LT(f) = fnx

n.
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Definition (irreducible). A polynomial f ∈ K[x] is called irreducible if deg(f) ≥ 1 and it cannot
be written as a product of polynomials of lower degree over the same field, i.e., if u(x)/f(x) then
u(x) ∈ K or u(x) = f(x).
Otherwise f is reducible. Note that this depends on the field K.

Example.
• x2 − 1 = (x+ 1)(x− 1) is reducible in R[x].
• x4 + 2x+ 1 = (x2 + 1)2 in R[x] has no roots but is reducible.

• x2 + 1 is irreducible in R[x] but reducible in C[x] by (x− i)(x+ i).

• x3 + 6x2 + 4 is irreducible in Z/7Z.
‘

The main choice we made in constructing GF(8) was how to write a · b in terms of the other
elements; b = a2 and so the question was how to represent a · b = a3 in terms of 1, a, and a2. We
chose a3 = a+1 and then all operations followed by using this equality. This polynomial, a3+a+1
does not factor over GF(2); other choices we considered, e.g., a3+1 do factor and it was exactly
by considering these factors, e.g., (a + 1) and (a2 + a + 1) that we derived contradictions, e.g.,
(a+1)·(a2+a+1) = a3+1 = 0 (using a3 = 1). In the end we worked in GF(2)[a]/(a3+a+1)GF(2)[a]

— the polynomial ring over GF(2) modulo the irreducible polynomial a3 + a+ 1.

Example. Compute a · (a2 + a) and (a + 1) · (a2 + a) in GF(8) using the irred. polynomial
a3 + a+ 1:

a · (a2 + a) = a3 + a2

1
a3 + a+ 1

)
a3 + a2

−(a3 + a+ 1)

a2 + a+ 1

(a+ 1) · (a2 + a) = a3 + a

1
a3 + a+ 1

)
a3 + a

−(a3 + a+ 1)

1

In general, this construction gives a finite field:
Let f be a monic irreducible polynomial of degree n over GF(p). We define addition and multi-
plication on

GF(p)[x]/f(x)GF(p)[x] =

{
n−1∑
i=0

aix
i | ai ∈ GF(p)

}
as addition and multiplication in GF(p)[x] followed by reduction modulo f(x).
The additive structure forms a group; this matches the vectorspace construction using basis 1, x,
x2, . . . , xn−1. Multiplication of two elements gives a polynomial of degree < n (after reduction),
associativity and commutativity are inherited from GF(p)[x], the neutral element is 1 — so the
question is whether every element 6= 0 is invertible.

Let g =
∑n−1

i=0 gix
i ∈ GF(p)[x]/f(x)GF(p)[x]. Since f is irreducible, gcd(f, g) = 1 and XGCD

computes polynomials h and l with 1 = g · h+ f · l, thus h ≡ g−1 mod f . This procedure works
for any g — so the multiplicative structure forms a group, too. The distributive laws hold as in
GF(p)[x] — so we have a field with pn elements, as soon as we have an irreducible polynomial
of degree n over GF(p).
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Example. The polynomial f = x3 + x2 + 1 is irreducible over the field F2.
What is the inverse of x2 + 1 over F2 modulo f?

x+ 1
x2 + 1

)
x3 + x2 + 1

− (x3 + x)

x2 + x+ 1
− (x2 + 1)

x

x3 + x2 + 1 = (x2 + 1)(x+ 1) + x

(x3 + x2 + 1) + (x2 + 1)(x+ 1) = x

x
x
)

x2 + 1
− x2

1

x2 + 1 = x · x+ 1

x2 + 1 + x · x = 1

1= (x3 + x2 + 1) · ? + (x2 + 1) · ?

1= (x2 + 1) + x · x
= (x2 + 1) +

[
(x3 + x2 + 1) + (x2 + 1)(x+ 1)

]
x

= (x2 + 1) + (x3 + x2 + 1) x+ (x2 + 1)(x+ 1) x
= (x3 + x2 + 1) x+ (x2 + 1) + (x2 + 1)(x+ 1) x
= (x3 + x2 + 1) x+ (x2 + 1) [1 + (x+ 1) x]
= (x3 + x2 + 1) x+ (x2 + 1)(x2 + x+ 1)

(x2 + 1)(x2 + x+ 1) = x4 + x3 + x++1

x
x3 + x2 + 1

)
x4 + x3 + x+ 1
(x4 + x3 + x)

1

Alternative approach:
We know that apn = a and apn−1 = 1 for a ∈ GF(pn) (Lagrange’s Theorem).
Thus a · apn−2 = ap

n−1 = 1.
So we can compute the inverse of (x2 + 1) as (x2 + 1)6 in GF(8):

(x2 + 1)6 = (x2 + 1)4 (x2 + 1)2

=
(
(x2 + 1)2

)2
(x2 + 1)2

= (x4 + 1)2 (x4 + 1)

= (x8 + 1) (x4 + 1)

= x12 + x8 + x4 + 1

x9 + x8 + x7 + x4 + x3 + x2 + x
x3 + x2 + 1

)
x12 + x8 + x4 + 1

− (x12 + x11 + x9)

x11 + x9 + x8 + x4 + 1
− (x11 + x10 + x8)

. . .
x2 + x+ 1

How do we find irreducible polynomials?
Pick a random polynomial and check if it is irreducible using “Rabin’s test of irreducibility” (or
a computer algebra system of your choice).
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