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Finite Fields

Definition (field). A set K is a field with respect to o and ¢, denoted (K, o,9), if
i) (K, o) is an abelian group,
ii) (K*,o) is and abelian group, where K* = K \ {e.}, and
iii) the distributive law holds in K, i.e.,
ao(boc)=aoboaocforall a,b,ce K
In other words, a field is a commutative ring with unity in which each nonzero element is invert-
ible. In particular there are no zero divisors, i.e., there are no a, b # e, such that a o b = e,.

Example (field).
e (Q,+,) inverse w.r.t. multiplication of ¢ is g for a # 0,

e (C,+,)

i (R7 +, ')7

e (Z,+,-) is NOT a field but a commutative ring with unity, the only invertible elements
are +1 and —1,

o (Qi)={a+bi|abeQ} +,-)is afield with + and - defined as in C.

Is there an example for a finite field?

)

+10 1 -0 1
00 1 010 O
111 0 110 1

— XOR and AND...

Definition (subfield). If (K, o,¢) and (L, 0,¢) are fields and K C L then K is a subfield of L.
= We can add elements of L to and multiply them with elements of K.
= L is a vectorspace over K (other properties work because of the distributive laws).

Definition (extension degree). Let L be a field and let K be a subfield of L. The extension
degree [L : K] is defined as dimg L, the dimension of L as a K vectorspace.

Definition (characteristic). Let K be a field. The characteristic of K, denoted char(K), is the
smallest positive integer m such that e; o e, 0 -+ - 0 e, = eo; if no such integer exists, char(K) = 0.
—_——

m copies of ey,
denoted as [m]es

Lemma. The characteristic of a field is O or prime.

Proof. Let char(K) =n = a-b with 1 < a,b < n. Then e, = [able, = [ale, © [ble, (repeated
application of the distributive law). Since a field has no zero divisors it must be that [a]e, = e,
or [ble, = e,. 4 to minimality. O

Lemma. A finite field K has characteristic p for some prime p.

Proof. Since K is finite, there must be 4, j € N with [ile, = [j]e,. Let ¢ > j, then [i — jles = e,
and so char(K)|(i — 7). O



Let K be a finite field. We will now explore its structure.
We know already: char(K) = p for a prime p, and there
exists eo,e, € K with e, # e,. Since K is closed under
o we do also find [2]es, [3]es, ... [p — 1]es, [ples = eo,
[p+ lle, = €o, ... a cyclic subgroup of order p of (K, o).
Multiplying two such elements [i]e, ¢ [jle. = [ij]es again
gives us an element of the set {[ile, | 0 < i < p}. The
scalars are considered modulo p because [ple, = e,. Since
p is prime, ¢ - j % 0 mod p for 0 < 7,5 < p. This means
that {[iles | 0 < i < p} forms a subgroup of K* (the mul-
tiplicative group in K; K* = K \ {eo}). If two structures
(groups, rings, fields, ...) behave exactly the same way so that one can give a one-to-one map
between them, mathematicians call these two structures isomorphic. Out considerations have
found a subfield of K which is isomorphic to Z/pz with map [ile; — i + pZ.

Definition (prime field). Let K be a field. The smallest subfield contained in K is called the
prime field of K.

Lemma. Let K be a finite field of characteristic p. The prime field of K is isomorphic to Z/z.

Above we found that an extension field can be considered as a vectorspace over its subfield. From
now on we identify the prime field of a finite field with Z/,7 and write 0 for e, and 1 for e,. Let
K : Z/pz) = n, i.e., the dimension of K as a vectorspace over Z/pz is n. This means that there
exists a basis of n linearly independent “vectors” ay, ag, ..., a, (vectors: elements of L; linearly
independent: using coefficients from Z/,z only); this being a basis means that every element
in K can be written in a unique way as Z?Zl cioy with ¢; € Z/,z; the p™ different choices for
(c1,¢2,...,¢n) € (Z/pz)"™ mean that K has p" elements.

Lemma. Let K be a finite field. There exists a prime p and an integer n € Nsqg such that
|K| = p™ and char(K) = p. The notation of a field of characteristic p and dimension n is Fyn
or GF(p") (for “Galois field”).

This implies that every finite field has a prime power as its cardinality, so in particular there are
no fields of size 6, 10, 14, 15 etc.
In this representation it is very easy to add elements:

(Z Ci@i) -+ (Z diOéfi) = Z(Cz + dz’)ai§
=1 =1

i=1

but for multiplying them we need to know «; - o for 1 <¢,5 < n.

From now on we write + for the first operation o and - for the second operation ¢ since we see
K as an extension of Z/pz.

Let’s see whether we can find out more about the multiplicative structure. Rember that for a
group G we have [|G|]a = e for any a € G by the properties of the order of a group. Since K is
a field, K* is a group and it has one element, namely 0, less than K; thus |[K*| =p" — 1.
Recall: The order of an element a in a group G is the least positive integer n such that a™ = e.
If such an element exists, we know that K* is cyclic and generated by this element. Observe first
that if @ has order k and b has order [ than a - b has order lem(k,1); this construction creates
elements of potentially larger order. Remember also that the order of every element divides the
group order. Assume that there exists an exponent e < p'™ — 1 such that a® =1 for all a € K*.
This means that the equation ¢ — 1 has a root at every a € K* — but a non-zero polynomial
cannot have more roots than its degree, so e > p™ — 1. Together this implies:

Lemma. Let K be a finite field. The multiplicative group K* is cyclic: a?"~* =1 for all a € K*.



+ 0 1 a a+1 Are there actually any fields beyond Z/,z? We know
0 0 1 a a+1 that they must have p" elements for some p and n — so

1 1 0 a+1 a what about a field with 22 = 4 elements? This should
a a a+1 0 1 have a basis of size 2, use @1 = 1 and as = a then
a+1]a+1 a 1 0 Fy = {0,1,a,a + 1} and we can simply write out the
addition table using the vectorspace structure. To write

the multiplication table — if possible — we need to

know what a? is in terms of 1, a, and a + 1. A table of a group has each element exactly once
per row and column. So defining a? = a conflict with having already entry @ in the first entry
of this row. Using a? = 1 means that a- (a + 1) = a® + a = 1 + a — but then the third column
has already a + 1 in the first entry. Try a> =a+1thena-(a+1)=d*+a=(a+1)+a=1
and (a+1)-(a+1)=a’+a+a+1=a’+1=(a+1)+1=a.

- |1 a a+l1 - |1 a a+l - | a a+1

1 1 a a-+1 1 1 a a-+1 1 1 a a+1

a a a a a 1 a+1 a a a+1 1
a+1|a+1 a+1|a+1 a+1|a+1 1 a

The tables show all group properties except for associativity. We could prove this by checking
all combinations but that is very cumbersome.

Let’s try another field Fg with 8 = 23 elements, thus a basis oy = 1, ag = a, a3 = b. If we use
a’? = 1, we run into the same problems as before; choosing a? = a + 1 constructs the same field
as before — no connection with b. So let’s try a® = b; then a - (a + 1) = a* + a = b + a. Again
several options for a-b. Obviously one can not choose a-b = a, b, or b4+a. Choosing a-b = 1 gives
(a+1)(b+a+1)=a-b+a’+a+b+a+1=1+b+b+1=0— which is not possible in a field.
Similarly a-b = a+0b+1 is excluded by (a+1)-(b+1) =a-b+a+b+1=a+b+1+a+b+1=0.
Trya-b=a+ 1:

(b+1)=a-b+a=a+1+a=1;

-(b+a)=a-b+a®>=(a+1)+b;

(b+a+1l)=---=a+1+b+a=>b+1,

—
(
(
(

a+1)??=ad’+1=0b+1;
~(a+b=a-b+b=(a+1)+b;
~(a+1D)0b+1)=a-b+a+b+1=(a+1)4+a+b+1=0
~(a+1)(b+a)=a-b+a’+b+a=(a+1)+b+b+a=1;
- =ad>b=a-(a-b)=a-(a+1)=a’+a=b+a
~(b+1)0b+a)=b+ba+b+a=((b+a)+(a+1)+b+ta=a+1
. 1 a a+1 b b+1 b+a b+a+1
1 1 a a+1 b b+1 b+a b+a+1
a a b b+a a+1 1 b+a+1 b+1
a+1 a+1 b+a b+1 a+b+1 b 1 a
b b a+1 a+b+1 b+a a b+1 1
b+1 b+1 1 b a b+a+1 a+1 b+a
b+a b+a b+a+1 1 b+1 a+1 a b
b+a+1|b+a+1 b+1 a 1 b+a b a+1

How can we get this “automatically”?
How do we compute a - b = ¢ without a lookup table?



