
Cryptography, homework sheet 3
Due: 24 September 2015, 10:45

Team up in groups of two or three to hand in your homework. We do not have capacity to
correct all homeworks individually. To submit your homework, email the programming part
to crypto15@tue.nl and place the written part on the lecturer’s table before the lecture. Do
not email Tanja or put homework in mailboxes.
You may use computer algebra systems such as mathematica, gp, or sage or program in C,
Java, or Python. Please submit your code as part of your homework. Make sure that your
programs compile and run correctly; my students will not debug your programs. The program
should be humanly readable.
If you are a student in the old masters system and for some reason cannot substitute 2MMC10
for the course (2WC09 or 2WC12) in your study program, please contact Tanja by email. To
find out whether you can substitute the course, talk to your study advisor.

1. 3 ∈ IF∗
1013 generates a group of order 1012, so it generates the whole multiplicative group

of the finite field.

Alice’s public key is ha = 224. Use ElGamal encryption to encrypt the messge m = 42
to her using the “random” value k = 654.

2. You find two signatures made by Alice. You know that she is using the ElGamal
signature scheme over IF2027 and that the order of the generator is n = 1013. The
signatures are for h(m1) = 345 and h(m2) = 567 and are given by (r1, s1) = (365, 448)
and (r2, s2) = (365, 969). Compute (a candidate for) Alice’s long-term secret a based
on these signatures, i.e. break the system.

3. 3 ∈ IF∗
1013 generates a group of order 1012 = 4 · 11 · 23. Solve the discrete logarithm

problem g = 3, h = 321 by using the Pohlig-Hellman attack, i.e. find an integer 0 < k <
1012 such that h = gk by computing first k modulo 2, 4, 11, and 23 and then computing
k using the Chinese Remainder Theorem.

Some people got stuck with the Chinese Remainder Theorem on the first sheet. Here is some
text about it.

Theorem 1 (Chinese Remainder Theorem)
Let r1, . . . , rk ∈ ZZ and let 0 6= n1, · · · , nk ∈ IN such that the ni are pairwise coprime. The
system of equivalences

X ≡ r1 mod n1,

X ≡ r2 mod n2,
...

X ≡ rk mod nk,

has a solution X which is unique up to multiples of N = n1 ·n2 · · ·nk. The set of all solutions
is given by {X + aN |a ∈ ZZ} = X + NZZ.

If the ni are not all coprime the system might not have a solution at all. E.g. the system
X ≡ 1 mod 8 and X ≡ 2 mod 6 does not have a solution since the first congruence implies
that X is odd while the second one implies that X is even. If the system has a solution
then it is unique only modulo lcm(n1, n2, . . . , nk). E.g. the system X ≡ 4 mod 8 and



X ≡ 2 mod 6 has solutions and the solutions are unique modulo 24. Replace X ≡ 2 mod 6 by
X ≡ 2 mod 3; the system still carries the same information but has coprime moduli and we

obtain X = 8a + 4 ≡ 2a + 1
!≡ 2 mod 3, thus a ≡ 2 mod 3 and X = 8(3b + 2) + 4 = 24b + 20.

The smallest positive solution is thus 20.

We now present a constructive algorithm to find this solution, making heavy use of the
extended Euclidean algorithm presented in the previous section. Since all ni are coprime, we
have gcd(ni, N/ni) = 1 and we can compute ui and vi with

uini + vi(N/ni) = 1.

Let ei = vi(N/ni), then this equation becomes uini + ei = 1 or ei ≡ 1 mod ni. Furthermore,
since all nj |(N/ni) for j 6= i we also have ei = vi(N/ni) ≡ 0 mod nj for j 6= i.
Using these values ei a solution to the system of equivalences is given by

X =
k∑

i=1

riei,

since X satisfies X ≡ ri mod ni for each 1 ≤ i ≤ k.

Example 2 Consider the system of integer equivalences

X ≡ 1 mod 3,

X ≡ 2 mod 5,

X ≡ 5 mod 7.

The moduli are coprime and we have N = 105. For n1 = 3, N1 = 35 we get v1 = 2 by just
observing that 2 · 35 = 70 ≡ 1 mod 3. So e1 = 70. Next we compute N2 = 21 and see v2 = 1
since 21 ≡ 1 mod 5. This gives e2 = 21. Finally, N3 = 15 and v3 = 1 so that e3 = 15.
The result is X = 70 + 2 · 21 + 5 · 15 = 187 which indeed satisfies all 3 congruences. To obtain
the smallest positive result we reduce 187 modulo N to obtain 82.

For easier reference we phrase this approach as an algorithm.

Algorithm 3 (Chinese remainder computation)
IN: system of k equivalences as (r1, n1), (r2, n2), . . . (rk, nk) with pairwise coprime ni

OUT: smallest positive solution to system

1. N ←
∏k

i=1 ni

2. X ← 0

3. for i = 1 to k

(a) M ← N div ni

(b) v ← ((Ni)
−1 mod ni) (use XGCD)

(c) e← vM

(d) X ← X + rie



4. X ← X mod N

The Pohlig-Hellman attack attack works in any group and is a way to reduce the reduce the
hardness of the DLP to the hardness of the DLP in subgroups of prime order. In particular
you’ll see in the exercise that it works against the DLP in IF∗

1013 by solving DLPs in groups
of size 2, 11, and 23. Here is the general description:
Let G be a cyclic group generated by g and let the challenge be to find logg h = k. Let the
group order n factor as n =

∏r
i=1 p

ei
i where pi 6= pj for i 6= j. Then k can be computed from

the information

k ≡ k1 mod pe11
k ≡ k2 mod pe22
k ≡ k3 mod pe33

...

k ≡ kr mod perr

by using the Chinese remainder theorem. This is because the peii are coprime and their
product is n. So, if one can find the DL modulo all peii one can compute the entire DL.
Put ni = n/peii . Since g has order n the element gi = gni has order peii . The element hi = hni

is in the subgroup generated by gi and it holds that hi = gkii , where ki ≡ k mod peii .
E.g. IF∗

16 = 〈g〉 has 15 elements, so one can first solve the DLP h = gk modulo 3 and then
modulo 5. For such small numbers one can simply compute h5 and compare it to 1, g5, and g10

to find whether k is equivalent to 0, 1, or 2 modulo 3. Then one compares h3 to 1, g3, g6, g9,
and g12 to see whether k is congruent to 0, 1, 2, 3, or 4 modulo 5.
The same approach works also for IF∗

17 which has 16 = 24 elements – but here one can do
much better! Write k = k0 + k12 + k22

2 + k32
3. Then h8 is either equal to 1 or to −1 = g8

depending on whether k0 is 0 or 1. Once that result is known we can compare (h/gk0)4 with
1 and −1 to find k1 etc. So we can solve a much smaller DLP. Instead of going for k modulo
peii at once we can first obtain k modulo pi, then modulo p2i , then modulo p3i , etc. till peii by
each time solving a DLP in a group of size pi.
Numerical examples:

IF∗
11 = 〈2〉, find k so that 3 = 2k. So g = 2 and h = 3. Compute n1 = 10/2 = 5,

gn1 = 25 = −1, and hn1 = 35 = 1 to see that k ≡ 0 mod 2. Then compute n2 = 10/5 = 2,
gn2 = 22 = 4, g2n2 = 24 = 5, g3n2 = 26 = 9, and g4n2 = 28 = 3 and compare that to
hn2 = 32 = 9 to see that k ≡ 3 mod 5. These two congruences imply that k = 8 and indeed
g8 = h.
IF∗

17 = 〈3〉, find k so that 7 = 3k. So g = 3 and h = 7. In this example we will obtain k
one bit at a time. First compare h8 = 78 = −1 to 1 and −1 to see that k ≡ 1 mod 2. Then
compute h/g = 8 and then (h/g)4 = −1, so also the next bit is 1 and we see k ≡ 3 mod 4.
Then compute h/g3 = 16 and then (h/g3)2 = 1 to see that the next bit is 0, so k ≡ 3 mod 8.
Finally, since h/g3 = 16 = −1 we see that the highest bit is 1, so k ≡ 11 mod 16 and indeed
311 = 7. This solved the DLP in IF∗

17 with just 4 very easy computations and comparisons.
So computing DLs in fields IFp with p = 2r + 1 is easy.


