
Message Authentication Codes (MACs)

Tung Chou

Technische Universiteit Eindhoven, The Netherlands

October 8, 2015

1 / 22

About Me

Tung Chou (Tony)

• Ph.D. student of Daniel J. Bernstein & Tanja Lange

• Research topics: Post-quantum crypto, ECC, MAC design.

• Email: t.chou@tue.nl

2 / 22

About Me

Tung Chou (Tony)

• Ph.D. student of Daniel J. Bernstein & Tanja Lange

• Research topics: Post-quantum crypto, ECC, MAC design.

• Email: t.chou@tue.nl

2 / 22

About Me

Tung Chou (Tony)

• Ph.D. student of Daniel J. Bernstein & Tanja Lange

• Research topics: Post-quantum crypto, ECC, MAC design.

• Email: t.chou@tue.nl

2 / 22

About Me

Tung Chou (Tony)

• Ph.D. student of Daniel J. Bernstein & Tanja Lange

• Research topics: Post-quantum crypto, ECC, MAC design.

• Email: t.chou@tue.nl

2 / 22

About Me

Tung Chou (Tony)

• Ph.D. student of Daniel J. Bernstein & Tanja Lange

• Research topics: Post-quantum crypto, ECC, MAC design.

• Email: t.chou@tue.nl

2 / 22

Outline

• Introduction

• HMAC

• Universal-hash based MACs

• Poly1305
• security issues
• software implementation issues

• Diffie–Hellman key exchange

3 / 22

Outline

• Introduction

• HMAC

• Universal-hash based MACs

• Poly1305
• security issues
• software implementation issues

• Diffie–Hellman key exchange

3 / 22

Outline

• Introduction

• HMAC

• Universal-hash based MACs

• Poly1305
• security issues
• software implementation issues

• Diffie–Hellman key exchange

3 / 22

Outline

• Introduction

• HMAC

• Universal-hash based MACs

• Poly1305
• security issues
• software implementation issues

• Diffie–Hellman key exchange

3 / 22

Outline

• Introduction

• HMAC

• Universal-hash based MACs

• Poly1305
• security issues
• software implementation issues

• Diffie–Hellman key exchange

3 / 22

What are MACs?

• On Wikipedia:

“a message authentication code (often MAC) is a
short piece of information used to authenticate a
message and to provide integrity and authenticity
assurances on the message. Integrity assurances
detect accidental and intentional message changes,
while authenticity assurances affirm the message’s
origin”

4 / 22

What are MACs?

• On Wikipedia:

“a message authentication code (often MAC) is a
short piece of information used to authenticate a
message and to provide integrity and authenticity
assurances on the message. Integrity assurances
detect accidental and intentional message changes,
while authenticity assurances affirm the message’s
origin”

4 / 22

Digital Signatures

• Construction:

message (m) hash h TP signature (s)

sk

pk

• Usage:

• S computes h and the SIGNsk(h).
• S sends (m, s).
• V gets (m′, s′).
• V computes and check hash(m′) = VERIFYpk(s′).

• Security
• attacker should not be able to forge a valid (m, s) pair
• attacker might have collected many (m, s) pairs

5 / 22

Digital Signatures

• Construction:

message (m) hash h TP signature (s)

sk

pk

• Usage:

• S computes h and the SIGNsk(h).
• S sends (m, s).
• V gets (m′, s′).
• V computes and check hash(m′) = VERIFYpk(s′).

• Security
• attacker should not be able to forge a valid (m, s) pair
• attacker might have collected many (m, s) pairs

5 / 22

Digital Signatures

• Construction:

message (m) hash h TP signature (s)

sk

pk

• Usage:

• S computes h and the SIGNsk(h).
• S sends (m, s).
• V gets (m′, s′).
• V computes and check hash(m′) = VERIFYpk(s′).

• Security
• attacker should not be able to forge a valid (m, s) pair
• attacker might have collected many (m, s) pairs

5 / 22

Digital Signatures

• Construction:

message (m) hash h TP signature (s)

sk

pk

• Usage:

• S computes h and the SIGNsk(h).
• S sends (m, s).

• V gets (m′, s′).
• V computes and check hash(m′) = VERIFYpk(s′).

• Security
• attacker should not be able to forge a valid (m, s) pair
• attacker might have collected many (m, s) pairs

5 / 22

Digital Signatures

• Construction:

message (m) hash h TP signature (s)

sk

pk

• Usage:

• S computes h and the SIGNsk(h).
• S sends (m, s).
• V gets (m′, s′).

• V computes and check hash(m′) = VERIFYpk(s′).

• Security
• attacker should not be able to forge a valid (m, s) pair
• attacker might have collected many (m, s) pairs

5 / 22

Digital Signatures

• Construction:

message (m) hash h TP signature (s)

sk

pk

• Usage:

• S computes h and the SIGNsk(h).
• S sends (m, s).
• V gets (m′, s′).
• V computes and check hash(m′) = VERIFYpk(s′).

• Security
• attacker should not be able to forge a valid (m, s) pair
• attacker might have collected many (m, s) pairs

5 / 22

Digital Signatures

• Construction:

message (m) hash h TP signature (s)

sk

pk

• Usage:

• S computes h and the SIGNsk(h).
• S sends (m, s).
• V gets (m′, s′).
• V computes and check hash(m′) = VERIFYpk(s′).

• Security

• attacker should not be able to forge a valid (m, s) pair
• attacker might have collected many (m, s) pairs

5 / 22

Digital Signatures

• Construction:

message (m) hash h TP signature (s)

sk

pk

• Usage:

• S computes h and the SIGNsk(h).
• S sends (m, s).
• V gets (m′, s′).
• V computes and check hash(m′) = VERIFYpk(s′).

• Security
• attacker should not be able to forge a valid (m, s) pair

• attacker might have collected many (m, s) pairs

5 / 22

Digital Signatures

• Construction:

message (m) hash h TP signature (s)

sk

pk

• Usage:

• S computes h and the SIGNsk(h).
• S sends (m, s).
• V gets (m′, s′).
• V computes and check hash(m′) = VERIFYpk(s′).

• Security
• attacker should not be able to forge a valid (m, s) pair
• attacker might have collected many (m, s) pairs

5 / 22

Message Authentication Codes

• “Keyed hash function”:

message (m)

shared secret key (r)

MAC algorithm tag/authenticator (t)

• Usage:

• S computes t = MACr(m) and sends (m, t).
• R gets (m′, t′).
• R computes and checks MACr(m′) = t′.

• Security
• attacker should not be able to forge a valid (m, t) pair
• attacker might have collected many (m, t) pairs

6 / 22

Message Authentication Codes

• “Keyed hash function”:

message (m)

shared secret key (r)

MAC algorithm tag/authenticator (t)

• Usage:

• S computes t = MACr(m) and sends (m, t).
• R gets (m′, t′).
• R computes and checks MACr(m′) = t′.

• Security
• attacker should not be able to forge a valid (m, t) pair
• attacker might have collected many (m, t) pairs

6 / 22

Message Authentication Codes

• “Keyed hash function”:

message (m)

shared secret key (r)

MAC algorithm tag/authenticator (t)

• Usage:

• S computes t = MACr(m) and sends (m, t).
• R gets (m′, t′).
• R computes and checks MACr(m′) = t′.

• Security
• attacker should not be able to forge a valid (m, t) pair
• attacker might have collected many (m, t) pairs

6 / 22

Message Authentication Codes

• “Keyed hash function”:

message (m)

shared secret key (r)

MAC algorithm tag/authenticator (t)

• Usage:

• S computes t = MACr(m) and sends (m, t).

• R gets (m′, t′).
• R computes and checks MACr(m′) = t′.

• Security
• attacker should not be able to forge a valid (m, t) pair
• attacker might have collected many (m, t) pairs

6 / 22

Message Authentication Codes

• “Keyed hash function”:

message (m)

shared secret key (r)

MAC algorithm tag/authenticator (t)

• Usage:

• S computes t = MACr(m) and sends (m, t).
• R gets (m′, t′).

• R computes and checks MACr(m′) = t′.

• Security
• attacker should not be able to forge a valid (m, t) pair
• attacker might have collected many (m, t) pairs

6 / 22

Message Authentication Codes

• “Keyed hash function”:

message (m)

shared secret key (r)

MAC algorithm tag/authenticator (t)

• Usage:

• S computes t = MACr(m) and sends (m, t).
• R gets (m′, t′).
• R computes and checks MACr(m′) = t′.

• Security
• attacker should not be able to forge a valid (m, t) pair
• attacker might have collected many (m, t) pairs

6 / 22

Message Authentication Codes

• “Keyed hash function”:

message (m)

shared secret key (r)

MAC algorithm tag/authenticator (t)

• Usage:

• S computes t = MACr(m) and sends (m, t).
• R gets (m′, t′).
• R computes and checks MACr(m′) = t′.

• Security

• attacker should not be able to forge a valid (m, t) pair
• attacker might have collected many (m, t) pairs

6 / 22

Message Authentication Codes

• “Keyed hash function”:

message (m)

shared secret key (r)

MAC algorithm tag/authenticator (t)

• Usage:

• S computes t = MACr(m) and sends (m, t).
• R gets (m′, t′).
• R computes and checks MACr(m′) = t′.

• Security
• attacker should not be able to forge a valid (m, t) pair

• attacker might have collected many (m, t) pairs

6 / 22

Message Authentication Codes

• “Keyed hash function”:

message (m)

shared secret key (r)

MAC algorithm tag/authenticator (t)

• Usage:

• S computes t = MACr(m) and sends (m, t).
• R gets (m′, t′).
• R computes and checks MACr(m′) = t′.

• Security
• attacker should not be able to forge a valid (m, t) pair
• attacker might have collected many (m, t) pairs

6 / 22

MACs vs Signatures

MACs Signatures

Integrity yes yes
Authenticity yes yes

Non-repudiation no yes

Key secret-key public-key

“Non-repudiation is about Alice showing to Bob a proof
that some data really comes from Alice, such that not
only Bob is convinced, but Bob also gets the assurance
that he could show the same proof to Charlie, and
Charlie would be convinced, too”

� secret-key crypto is “fast”

7 / 22

MACs vs Signatures

MACs Signatures

Integrity yes yes
Authenticity yes yes

Non-repudiation no yes

Key secret-key public-key

“Non-repudiation is about Alice showing to Bob a proof
that some data really comes from Alice, such that not
only Bob is convinced, but Bob also gets the assurance
that he could show the same proof to Charlie, and
Charlie would be convinced, too”

� secret-key crypto is “fast”

7 / 22

MACs vs Signatures

MACs Signatures

Integrity yes yes
Authenticity yes yes

Non-repudiation no yes

Key secret-key public-key

“Non-repudiation is about Alice showing to Bob a proof
that some data really comes from Alice, such that not
only Bob is convinced, but Bob also gets the assurance
that he could show the same proof to Charlie, and
Charlie would be convinced, too”

� secret-key crypto is “fast”

7 / 22

MACs vs Signatures

MACs Signatures

Integrity yes yes
Authenticity yes yes

Non-repudiation no yes

Key secret-key public-key

“Non-repudiation is about Alice showing to Bob a proof
that some data really comes from Alice, such that not
only Bob is convinced, but Bob also gets the assurance
that he could show the same proof to Charlie, and
Charlie would be convinced, too”

� secret-key crypto is “fast”

7 / 22

HMAC

• Build MAC from hash functions

• A naive construction:

t = H(r || m)

• Merkle–Damg̊ard construction based hashes (e.g., MD5,
SHA1)

IV

m1 m2 m`

f f · · · f h

• Length extension attack: h′ = f(h,m`+1)

8 / 22

HMAC

• Build MAC from hash functions

• A naive construction:

t = H(r || m)

• Merkle–Damg̊ard construction based hashes (e.g., MD5,
SHA1)

IV

m1 m2 m`

f f · · · f h

• Length extension attack: h′ = f(h,m`+1)

8 / 22

HMAC

• Build MAC from hash functions

• A naive construction:

t = H(r || m)

• Merkle–Damg̊ard construction based hashes (e.g., MD5,
SHA1)

IV

m1 m2 m`

f f · · · f h

• Length extension attack: h′ = f(h,m`+1)

8 / 22

HMAC

• Build MAC from hash functions

• A naive construction:

t = H(r || m)

• Merkle–Damg̊ard construction based hashes (e.g., MD5,
SHA1)

IV

m1 m2 m`

f f · · · f h

• Length extension attack: h′ = f(h,m`+1)

8 / 22

HMAC

• Build MAC from hash functions

• A naive construction:

t = H(r || m)

• Merkle–Damg̊ard construction based hashes (e.g., MD5,
SHA1)

IV

m1 m2 m`

f f · · · f h

• Length extension attack: h′ = f(h,m`+1)

8 / 22

HMAC (cont.)

• Another construction:

t = H(m || r)

• HMAC:
t = H ((r ⊕ po)||H((r ⊕ pi)||m))

• HMAC-SHA1
• widely used in Internet applications
• 5.18 Sandy Bridge cycles/byte

� Reality: the most commonly used scheme might not be the best

9 / 22

HMAC (cont.)

• Another construction:

t = H(m || r)

• HMAC:
t = H ((r ⊕ po)||H((r ⊕ pi)||m))

• HMAC-SHA1
• widely used in Internet applications
• 5.18 Sandy Bridge cycles/byte

� Reality: the most commonly used scheme might not be the best

9 / 22

HMAC (cont.)

• Another construction:

t = H(m || r)

• HMAC:
t = H ((r ⊕ po)||H((r ⊕ pi)||m))

• HMAC-SHA1
• widely used in Internet applications
• 5.18 Sandy Bridge cycles/byte

� Reality: the most commonly used scheme might not be the best

9 / 22

HMAC (cont.)

• Another construction:

t = H(m || r)

• HMAC:
t = H ((r ⊕ po)||H((r ⊕ pi)||m))

• HMAC-SHA1

• widely used in Internet applications
• 5.18 Sandy Bridge cycles/byte

� Reality: the most commonly used scheme might not be the best

9 / 22

HMAC (cont.)

• Another construction:

t = H(m || r)

• HMAC:
t = H ((r ⊕ po)||H((r ⊕ pi)||m))

• HMAC-SHA1
• widely used in Internet applications

• 5.18 Sandy Bridge cycles/byte

� Reality: the most commonly used scheme might not be the best

9 / 22

HMAC (cont.)

• Another construction:

t = H(m || r)

• HMAC:
t = H ((r ⊕ po)||H((r ⊕ pi)||m))

• HMAC-SHA1
• widely used in Internet applications
• 5.18 Sandy Bridge cycles/byte

� Reality: the most commonly used scheme might not be the best

9 / 22

HMAC (cont.)

• Another construction:

t = H(m || r)

• HMAC:
t = H ((r ⊕ po)||H((r ⊕ pi)||m))

• HMAC-SHA1
• widely used in Internet applications
• 5.18 Sandy Bridge cycles/byte

� Reality: the most commonly used scheme might not be the best

9 / 22

SHA3

The “Sponge” construction:

http://en.wikipedia.org/wiki/SHA-3

10 / 22

http://en.wikipedia.org/wiki/SHA-3

The Wegman–Carter construction

• Why?

• provides information theoretic security
• usually involves field/ring arithmetic
• better performance than HMAC

• Construction

• “universal” hash function + one-time pad:

hr(mn)⊕ sn

• universal hash: low differential probability
• one-time pad hides all information about the key

11 / 22

The Wegman–Carter construction

• Why?

• provides information theoretic security
• usually involves field/ring arithmetic
• better performance than HMAC

• Construction

• “universal” hash function + one-time pad:

hr(mn)⊕ sn

• universal hash: low differential probability
• one-time pad hides all information about the key

11 / 22

The Wegman–Carter construction

• Why?

• provides information theoretic security

• usually involves field/ring arithmetic
• better performance than HMAC

• Construction

• “universal” hash function + one-time pad:

hr(mn)⊕ sn

• universal hash: low differential probability
• one-time pad hides all information about the key

11 / 22

The Wegman–Carter construction

• Why?

• provides information theoretic security
• usually involves field/ring arithmetic

• better performance than HMAC

• Construction

• “universal” hash function + one-time pad:

hr(mn)⊕ sn

• universal hash: low differential probability
• one-time pad hides all information about the key

11 / 22

The Wegman–Carter construction

• Why?

• provides information theoretic security
• usually involves field/ring arithmetic
• better performance than HMAC

• Construction

• “universal” hash function + one-time pad:

hr(mn)⊕ sn

• universal hash: low differential probability
• one-time pad hides all information about the key

11 / 22

The Wegman–Carter construction

• Why?

• provides information theoretic security
• usually involves field/ring arithmetic
• better performance than HMAC

• Construction

• “universal” hash function + one-time pad:

hr(mn)⊕ sn

• universal hash: low differential probability
• one-time pad hides all information about the key

11 / 22

The Wegman–Carter construction

• Why?

• provides information theoretic security
• usually involves field/ring arithmetic
• better performance than HMAC

• Construction

• “universal” hash function + one-time pad:

hr(mn)⊕ sn

• universal hash: low differential probability
• one-time pad hides all information about the key

11 / 22

The Wegman–Carter construction

• Why?

• provides information theoretic security
• usually involves field/ring arithmetic
• better performance than HMAC

• Construction

• “universal” hash function + one-time pad:

hr(mn)⊕ sn

• universal hash: low differential probability
• one-time pad hides all information about the key

11 / 22

The Wegman–Carter construction

• Why?

• provides information theoretic security
• usually involves field/ring arithmetic
• better performance than HMAC

• Construction

• “universal” hash function + one-time pad:

hr(mn)⊕ sn

• universal hash: low differential probability

• one-time pad hides all information about the key

11 / 22

The Wegman–Carter construction

• Why?

• provides information theoretic security
• usually involves field/ring arithmetic
• better performance than HMAC

• Construction

• “universal” hash function + one-time pad:

hr(mn)⊕ sn

• universal hash: low differential probability
• one-time pad hides all information about the key

11 / 22

Poly1305

• Construction:

t = (((m1r
`+m2r

`−1+· · ·+m`r) mod 2130−5)+s) mod 2128

• 2130 − 5 is a prime
• r, s are shared secret 128-bit values
• mi<` is the ith 128-bit block of m padded by 1.
• m` is the “remainder” of m padded by 1.

• Without proper padding?

• m = ’FF’, m′ = ’FF’,’00’
• zero-pad the message obtain a 128-bit block

m1 = m′
1 = ’FF’, ’00’, ..., ’00’

• Speed: 1.22 Sandy Bridge cycles/byte

12 / 22

Poly1305

• Construction:

t = (((m1r
`+m2r

`−1+· · ·+m`r) mod 2130−5)+s) mod 2128

• 2130 − 5 is a prime
• r, s are shared secret 128-bit values
• mi<` is the ith 128-bit block of m padded by 1.
• m` is the “remainder” of m padded by 1.

• Without proper padding?

• m = ’FF’, m′ = ’FF’,’00’
• zero-pad the message obtain a 128-bit block

m1 = m′
1 = ’FF’, ’00’, ..., ’00’

• Speed: 1.22 Sandy Bridge cycles/byte

12 / 22

Poly1305

• Construction:

t = (((m1r
`+m2r

`−1+· · ·+m`r) mod 2130−5)+s) mod 2128

• 2130 − 5 is a prime
• r, s are shared secret 128-bit values

• mi<` is the ith 128-bit block of m padded by 1.
• m` is the “remainder” of m padded by 1.

• Without proper padding?

• m = ’FF’, m′ = ’FF’,’00’
• zero-pad the message obtain a 128-bit block

m1 = m′
1 = ’FF’, ’00’, ..., ’00’

• Speed: 1.22 Sandy Bridge cycles/byte

12 / 22

Poly1305

• Construction:

t = (((m1r
`+m2r

`−1+· · ·+m`r) mod 2130−5)+s) mod 2128

• 2130 − 5 is a prime
• r, s are shared secret 128-bit values
• mi<` is the ith 128-bit block of m padded by 1.
• m` is the “remainder” of m padded by 1.

• Without proper padding?

• m = ’FF’, m′ = ’FF’,’00’
• zero-pad the message obtain a 128-bit block

m1 = m′
1 = ’FF’, ’00’, ..., ’00’

• Speed: 1.22 Sandy Bridge cycles/byte

12 / 22

Poly1305

• Construction:

t = (((m1r
`+m2r

`−1+· · ·+m`r) mod 2130−5)+s) mod 2128

• 2130 − 5 is a prime
• r, s are shared secret 128-bit values
• mi<` is the ith 128-bit block of m padded by 1.
• m` is the “remainder” of m padded by 1.

• Without proper padding?

• m = ’FF’, m′ = ’FF’,’00’
• zero-pad the message obtain a 128-bit block

m1 = m′
1 = ’FF’, ’00’, ..., ’00’

• Speed: 1.22 Sandy Bridge cycles/byte

12 / 22

Poly1305

• Construction:

t = (((m1r
`+m2r

`−1+· · ·+m`r) mod 2130−5)+s) mod 2128

• 2130 − 5 is a prime
• r, s are shared secret 128-bit values
• mi<` is the ith 128-bit block of m padded by 1.
• m` is the “remainder” of m padded by 1.

• Without proper padding?

• m = ’FF’, m′ = ’FF’,’00’
• zero-pad the message obtain a 128-bit block

m1 = m′
1 = ’FF’, ’00’, ..., ’00’

• Speed: 1.22 Sandy Bridge cycles/byte

12 / 22

Poly1305

• Construction:

t = (((m1r
`+m2r

`−1+· · ·+m`r) mod 2130−5)+s) mod 2128

• 2130 − 5 is a prime
• r, s are shared secret 128-bit values
• mi<` is the ith 128-bit block of m padded by 1.
• m` is the “remainder” of m padded by 1.

• Without proper padding?

• m = ’FF’, m′ = ’FF’,’00’
• zero-pad the message obtain a 128-bit block

m1 = m′
1 = ’FF’, ’00’, ..., ’00’

• Speed: 1.22 Sandy Bridge cycles/byte

12 / 22

Poly1305: avoiding security issue

• What is wrong with “real” polynomial evaluation?

t = m1r
`−1 +m2r

`−2 + · · ·+m` + s

• The attacker forges a valid message–tag pair easily:

t+ ∆ = m1r
`−1 +m2r

`−2 + · · ·+ (m` + ∆) + s

• This does not provide low differential probability

13 / 22

Poly1305: avoiding security issue

• What is wrong with “real” polynomial evaluation?

t = m1r
`−1 +m2r

`−2 + · · ·+m` + s

• The attacker forges a valid message–tag pair easily:

t+ ∆ = m1r
`−1 +m2r

`−2 + · · ·+ (m` + ∆) + s

• This does not provide low differential probability

13 / 22

Poly1305: avoiding security issue

• What is wrong with “real” polynomial evaluation?

t = m1r
`−1 +m2r

`−2 + · · ·+m` + s

• The attacker forges a valid message–tag pair easily:

t+ ∆ = m1r
`−1 +m2r

`−2 + · · ·+ (m` + ∆) + s

• This does not provide low differential probability

13 / 22

Poly1305: avoiding security issue

• What is wrong with “real” polynomial evaluation?

t = m1r
`−1 +m2r

`−2 + · · ·+m` + s

• The attacker forges a valid message–tag pair easily:

t+ ∆ = m1r
`−1 +m2r

`−2 + · · ·+ (m` + ∆) + s

• This does not provide low differential probability

13 / 22

Poly1305: avoiding security issue

• What is wrong with using the same pad twice?

t = m1r
` +m2r

`−1 + · · ·+m`r + s

t′ = m′1r
` +m′2r

`−1 + · · ·+m′`r + s

• The attacker gets information of r by finding roots of

t− t′ = (m1 −m′1)r` + (m2 −m′2)r`−1 + · · ·+ (m` −m′`)r

• “nonce-misuse” issue

• In practice s is usually replaced by stream cipher output, e.g.,
AESk(n) for mn

• HMAC does not use nonce

14 / 22

Poly1305: avoiding security issue

• What is wrong with using the same pad twice?

t = m1r
` +m2r

`−1 + · · ·+m`r + s

t′ = m′1r
` +m′2r

`−1 + · · ·+m′`r + s

• The attacker gets information of r by finding roots of

t− t′ = (m1 −m′1)r` + (m2 −m′2)r`−1 + · · ·+ (m` −m′`)r

• “nonce-misuse” issue

• In practice s is usually replaced by stream cipher output, e.g.,
AESk(n) for mn

• HMAC does not use nonce

14 / 22

Poly1305: avoiding security issue

• What is wrong with using the same pad twice?

t = m1r
` +m2r

`−1 + · · ·+m`r + s

t′ = m′1r
` +m′2r

`−1 + · · ·+m′`r + s

• The attacker gets information of r by finding roots of

t− t′ = (m1 −m′1)r` + (m2 −m′2)r`−1 + · · ·+ (m` −m′`)r

• “nonce-misuse” issue

• In practice s is usually replaced by stream cipher output, e.g.,
AESk(n) for mn

• HMAC does not use nonce

14 / 22

Poly1305: avoiding security issue

• What is wrong with using the same pad twice?

t = m1r
` +m2r

`−1 + · · ·+m`r + s

t′ = m′1r
` +m′2r

`−1 + · · ·+m′`r + s

• The attacker gets information of r by finding roots of

t− t′ = (m1 −m′1)r` + (m2 −m′2)r`−1 + · · ·+ (m` −m′`)r

• “nonce-misuse” issue

• In practice s is usually replaced by stream cipher output, e.g.,
AESk(n) for mn

• HMAC does not use nonce

14 / 22

Poly1305: avoiding security issue

• What is wrong with using the same pad twice?

t = m1r
` +m2r

`−1 + · · ·+m`r + s

t′ = m′1r
` +m′2r

`−1 + · · ·+m′`r + s

• The attacker gets information of r by finding roots of

t− t′ = (m1 −m′1)r` + (m2 −m′2)r`−1 + · · ·+ (m` −m′`)r

• “nonce-misuse” issue

• In practice s is usually replaced by stream cipher output, e.g.,
AESk(n) for mn

• HMAC does not use nonce

14 / 22

Poly1305: avoiding security issue

• What is wrong with using the same pad twice?

t = m1r
` +m2r

`−1 + · · ·+m`r + s

t′ = m′1r
` +m′2r

`−1 + · · ·+m′`r + s

• The attacker gets information of r by finding roots of

t− t′ = (m1 −m′1)r` + (m2 −m′2)r`−1 + · · ·+ (m` −m′`)r

• “nonce-misuse” issue

• In practice s is usually replaced by stream cipher output, e.g.,
AESk(n) for mn

• HMAC does not use nonce

14 / 22

Poly1305: polynomial evaluation

Consider m1r
8 +m2r

7 + · · ·+m8r

• Horner’s rule:

r m1 m2 m3 m4 m5 m6 m7 m8

+

+

+

+

+

+

+

×

×

×

×

×

×

×

×

• n multiplications (and n− 1 additions)

• The issue of being “on-line”

15 / 22

Poly1305: polynomial evaluation
Consider m1r

8 +m2r
7 + · · ·+m8r

• Horner’s rule:

r m1 m2 m3 m4 m5 m6 m7 m8

+

+

+

+

+

+

+

×

×

×

×

×

×

×

×

• n multiplications (and n− 1 additions)

• The issue of being “on-line”

15 / 22

Poly1305: polynomial evaluation
Consider m1r

8 +m2r
7 + · · ·+m8r

• Horner’s rule:

r m1 m2 m3 m4 m5 m6 m7 m8

+

+

+

+

+

+

+

×

×

×

×

×

×

×

×

• n multiplications (and n− 1 additions)

• The issue of being “on-line”

15 / 22

Poly1305: polynomial evaluation
Consider m1r

8 +m2r
7 + · · ·+m8r

• Horner’s rule:

r m1 m2 m3 m4 m5 m6 m7 m8

+

+

+

+

+

+

+

×

×

×

×

×

×

×

×

• n multiplications (and n− 1 additions)

• The issue of being “on-line”

15 / 22

Poly1305: polynomial evaluation
Consider m1r

8 +m2r
7 + · · ·+m8r

• Horner’s rule:

r m1 m2 m3 m4 m5 m6 m7 m8

+

+

+

+

+

+

+

×

×

×

×

×

×

×

×

• n multiplications (and n− 1 additions)

• The issue of being “on-line”

15 / 22

GMAC

• The NIST-standard authenticated encryption scheme GCM
• Galois Counter Mode
• Special hardware support for AES-GCM in high-end CPUs

• Polynomial evaluation MAC:

t = (m1r
` +m2r

`−1 + · · ·+m`r) + s

• Based on arithmetic in

F2128 = F2[x]/(x128 + x7 + x2 + x+ 1)

� Binary fields: better in hardware

16 / 22

GMAC

• The NIST-standard authenticated encryption scheme GCM

• Galois Counter Mode
• Special hardware support for AES-GCM in high-end CPUs

• Polynomial evaluation MAC:

t = (m1r
` +m2r

`−1 + · · ·+m`r) + s

• Based on arithmetic in

F2128 = F2[x]/(x128 + x7 + x2 + x+ 1)

� Binary fields: better in hardware

16 / 22

GMAC

• The NIST-standard authenticated encryption scheme GCM
• Galois Counter Mode

• Special hardware support for AES-GCM in high-end CPUs

• Polynomial evaluation MAC:

t = (m1r
` +m2r

`−1 + · · ·+m`r) + s

• Based on arithmetic in

F2128 = F2[x]/(x128 + x7 + x2 + x+ 1)

� Binary fields: better in hardware

16 / 22

GMAC

• The NIST-standard authenticated encryption scheme GCM
• Galois Counter Mode
• Special hardware support for AES-GCM in high-end CPUs

• Polynomial evaluation MAC:

t = (m1r
` +m2r

`−1 + · · ·+m`r) + s

• Based on arithmetic in

F2128 = F2[x]/(x128 + x7 + x2 + x+ 1)

� Binary fields: better in hardware

16 / 22

GMAC

• The NIST-standard authenticated encryption scheme GCM
• Galois Counter Mode
• Special hardware support for AES-GCM in high-end CPUs

• Polynomial evaluation MAC:

t = (m1r
` +m2r

`−1 + · · ·+m`r) + s

• Based on arithmetic in

F2128 = F2[x]/(x128 + x7 + x2 + x+ 1)

� Binary fields: better in hardware

16 / 22

GMAC

• The NIST-standard authenticated encryption scheme GCM
• Galois Counter Mode
• Special hardware support for AES-GCM in high-end CPUs

• Polynomial evaluation MAC:

t = (m1r
` +m2r

`−1 + · · ·+m`r) + s

• Based on arithmetic in

F2128 = F2[x]/(x128 + x7 + x2 + x+ 1)

� Binary fields: better in hardware

16 / 22

GMAC

• The NIST-standard authenticated encryption scheme GCM
• Galois Counter Mode
• Special hardware support for AES-GCM in high-end CPUs

• Polynomial evaluation MAC:

t = (m1r
` +m2r

`−1 + · · ·+m`r) + s

• Based on arithmetic in

F2128 = F2[x]/(x128 + x7 + x2 + x+ 1)

� Binary fields: better in hardware

16 / 22

GCM

http://en.wikipedia.org/wiki/Galois/Counter_Mode

17 / 22

http://en.wikipedia.org/wiki/Galois/Counter_Mode

GMAC: speeds

reference platform PCLMUQDQ cycles per byte

Käsper–Schwabe 2009 Core 2 no 14.40
Sandy Bridge no 13.10

Krovetz–Rogaway 2011 Westmere yes 2.00
Gueron 2013 Sandy Bridge yes 1.79

Haswell yes 0.40

18 / 22

Auth256∗

• Construction

• a pseudo-dot-product MAC:

t = (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·+ s

• base field F2256 = F28 [x]/(φ). Tower field construction for F28 .

• Compared to GMAC

• higher security level
• 0.5/1 multiplications per block
• larger key size
• very different field construction for low bit operation count

19 / 22

Auth256∗

• Construction

• a pseudo-dot-product MAC:

t = (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·+ s

• base field F2256 = F28 [x]/(φ). Tower field construction for F28 .

• Compared to GMAC

• higher security level
• 0.5/1 multiplications per block
• larger key size
• very different field construction for low bit operation count

19 / 22

Auth256∗

• Construction

• a pseudo-dot-product MAC:

t = (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·+ s

• base field F2256 = F28 [x]/(φ). Tower field construction for F28 .

• Compared to GMAC

• higher security level
• 0.5/1 multiplications per block
• larger key size
• very different field construction for low bit operation count

19 / 22

Auth256∗

• Construction

• a pseudo-dot-product MAC:

t = (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·+ s

• base field F2256 = F28 [x]/(φ). Tower field construction for F28 .

• Compared to GMAC

• higher security level
• 0.5/1 multiplications per block
• larger key size
• very different field construction for low bit operation count

19 / 22

Auth256∗

• Construction

• a pseudo-dot-product MAC:

t = (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·+ s

• base field F2256 = F28 [x]/(φ). Tower field construction for F28 .

• Compared to GMAC

• higher security level
• 0.5/1 multiplications per block
• larger key size
• very different field construction for low bit operation count

19 / 22

Auth256∗

• Construction

• a pseudo-dot-product MAC:

t = (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·+ s

• base field F2256 = F28 [x]/(φ). Tower field construction for F28 .

• Compared to GMAC

• higher security level

• 0.5/1 multiplications per block
• larger key size
• very different field construction for low bit operation count

19 / 22

Auth256∗

• Construction

• a pseudo-dot-product MAC:

t = (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·+ s

• base field F2256 = F28 [x]/(φ). Tower field construction for F28 .

• Compared to GMAC

• higher security level
• 0.5/1 multiplications per block

• larger key size
• very different field construction for low bit operation count

19 / 22

Auth256∗

• Construction

• a pseudo-dot-product MAC:

t = (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·+ s

• base field F2256 = F28 [x]/(φ). Tower field construction for F28 .

• Compared to GMAC

• higher security level
• 0.5/1 multiplications per block
• larger key size

• very different field construction for low bit operation count

19 / 22

Auth256∗

• Construction

• a pseudo-dot-product MAC:

t = (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·+ s

• base field F2256 = F28 [x]/(φ). Tower field construction for F28 .

• Compared to GMAC

• higher security level
• 0.5/1 multiplications per block
• larger key size
• very different field construction for low bit operation count

19 / 22

Wegman–Carter construction: security

• “δ-xor-universal hash”: For all distinct (m,m′) and ∆, we
have

Pr
(
Hashr(m) = Hashr(m

′)⊕∆
)
≤ δ

• The one-time pad hides all information about the key r.

• The best strategy for the attacker is to guess.

20 / 22

Wegman–Carter construction: security

• “δ-xor-universal hash”: For all distinct (m,m′) and ∆, we
have

Pr
(
Hashr(m) = Hashr(m

′)⊕∆
)
≤ δ

• The one-time pad hides all information about the key r.

• The best strategy for the attacker is to guess.

20 / 22

Auth256: Security Proof

Hash values:

h =(m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · · + (m2`−1 + r2`−1)(m2` + r2`),

h′ =(m′1 + r1)(m′2 + r2) + (m′3 + r3)(m′4 + r4) + · · · + (m′2`−1 + r2`−1)(m′2` + r2`).

Then h = h′ + ∆ if and only if

r1(m2 −m′2) + r2(m1 −m′1) + r3(m4 −m′4) + r4(m3 −m′3) + · · ·
= ∆ + m′1m

′
2 −m1m2 + m′3m

′
4 −m3m4 + · · · .

m 6= m′ implies that there are at most |K|2`−1 solutions for r.

21 / 22

Auth256: Security Proof

Hash values:

h =(m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · · + (m2`−1 + r2`−1)(m2` + r2`),

h′ =(m′1 + r1)(m′2 + r2) + (m′3 + r3)(m′4 + r4) + · · · + (m′2`−1 + r2`−1)(m′2` + r2`).

Then h = h′ + ∆ if and only if

r1(m2 −m′2) + r2(m1 −m′1) + r3(m4 −m′4) + r4(m3 −m′3) + · · ·
= ∆ + m′1m

′
2 −m1m2 + m′3m

′
4 −m3m4 + · · · .

m 6= m′ implies that there are at most |K|2`−1 solutions for r.

21 / 22

Auth256: Security Proof

Hash values:

h =(m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · · + (m2`−1 + r2`−1)(m2` + r2`),

h′ =(m′1 + r1)(m′2 + r2) + (m′3 + r3)(m′4 + r4) + · · · + (m′2`−1 + r2`−1)(m′2` + r2`).

Then h = h′ + ∆ if and only if

r1(m2 −m′2) + r2(m1 −m′1) + r3(m4 −m′4) + r4(m3 −m′3) + · · ·
= ∆ + m′1m

′
2 −m1m2 + m′3m

′
4 −m3m4 + · · · .

m 6= m′ implies that there are at most |K|2`−1 solutions for r.

21 / 22

CBC-MAC

http://en.wikipedia.org/wiki/CBC-MAC

22 / 22

http://en.wikipedia.org/wiki/CBC-MAC

