Algebra and discrete mathematics, homework sheet 4

Due: 20 March 2015, 13:45

You can hand in in groups of two or three. Please clearly write the names on the sheet.

- 1. Let $\phi: R_1 \to R_2$ be a ring homomorphism. Show that $\text{Im}(\phi)$ is a subring of R_2 .
- 2. Let $(\mathbb{C}, +, \cdot)$ denote the field of complex numbers with regular addition and multiplication. Let the sets M_1 and M_2 be defined as follows:

$$M_1 = \{a + b\sqrt[3]{6} + c\sqrt[3]{6^2} | a, b, c \in \mathbb{Z}\} \subseteq \mathbb{C},$$
$$M_2 = \{a + b\sqrt{2} + c\sqrt{3} | a, b, c \in \mathbb{Z}\} \subseteq \mathbb{C}.$$

- (a) Study whether (M_1, \cdot) is a semigroup.
- (b) Study whether (M_2, \cdot) is a semigroup.
- (c) Is $(M_1, +, \cdot)$ a subring of $(\mathbb{C}, +, \cdot)$? Why?
- 3. Consider the ring $R = \mathbb{Z}/2 \times \mathbb{Z}/7 \times \mathbb{Z}/9$.
 - (a) How many elements does R have?
 - (b) Compute the order of R^{\times} .
 - (c) Compute the (multiplicative) order of $(1, 3, 4) \in \mathbb{R}^{\times}$.
 - (d) Does there exist an integer m such that $R \cong \mathbb{Z}/m$? If so, compute it, explain how to compute the ring homomorphism and the inverse of the ring homomorphism, and compute the image of (1, 3, 2). If not, why not?
 - (e) Find two elements $a, b \in R$ so that $a \cdot b = (0, 0, 0)$ but $a, b \neq (0, 0, 0)$.
 - (f) Compute the number of elements $a \in R$ with $a \neq (0,0,0)$ for which there exists a $b \neq (0,0,0)$ such that $a \cdot b = (0,0,0)$.
 - (g) How many such zero divisors exist in R^{\times} ?
- 4. Let R be a ring and let $\phi: R \to R$ be a ring homomorphism. Show that the set

$$S = \{s \in R | \phi(s) = s\}$$

is a subring of R.