Algebra and discrete mathematics, homework sheet 3

Due: 10 March 2015, 8:45

You can hand in groups of size two or three; specify names and student numbers. To hand in send *email* to tanja@hyperelliptic.org with your program. Please include your program as a .txt or .sage file or save it as a worksheet.

This sheet is part of the regular homework and counts towards your grade; sorry for the confusing information on Oase.

- 1. Let p be a prime. Write three programs to find a generator of the multiplicative group of \mathbb{Z}/p as specified below. None of them should use $\mathsf{Zmod}(p).\mathsf{unit_gens}()$ or $\mathsf{Zmod}(p).\mathsf{multiplicative_generator}()$.
 - (a) Use the .multiplicative_order() command.
 - (b) Use the list of divisors of p-1 to check for the order. This should use the divisors (p-1) command.
 - (c) Use that a is a generator if and only if $a^{(p-1)/p_i} \not\equiv 1 \mod p$ for all primes $p_i|(p-1)$. This should use the factor(p-1) command and be significantly faster than the previous method.
- 2. Write a program that computes all generators of the multiplicative group $(\mathbb{Z}/p)^{\times}$. Note that for p a prime this group contains all non-zero elements in \mathbb{Z}/p .
- 3. Compute the order of the multiplicative group of $\mathbb{Z}/12347$ and of $\mathbb{Z}/12345$.
- 4. Compute the number of generators of the multiplicative group of ℤ/12347.
- 5. Compute all subgroups of $(\mathbb{Z}/15, +) \times (\mathbb{Z}/12, +)$.
- 6. Let $\mathbb{Z}/15 = \langle r \rangle$ and $\mathbb{Z}/12 = \langle s \rangle$. Compute the subgroup generated by (r^2, s^4) and (r^3, s^2)