Algebra and discrete mathematics, homework sheet 2 Due: 3 March 2015, 8:45

You can hand in in groups of two or three. We suggest you all try to solve the exercises by yourself and then consolidate your group's results into a single writeup that you hand in. Please clearly write the names and study number on all sheets.

- 1. The integers modulo 30 form a monoid, $(\mathbb{Z}/30, \cdot, 1)$, with respect to multiplication.
 - (a) Detemine $(\mathbb{Z}/30)^{\times}$, i.e. the group of invertible elements.
 - (b) Denote the class $a + 30\mathbb{Z}$ by a. Compute the cyclic submonoids $\langle 3 \rangle, \langle 6 \rangle$, and $\langle 7 \rangle$ and determine for each of them the cycle length and the tail length.
- 2. Let $(G, \circ, e, x \mapsto inv(x))$ be a group and let $X \subseteq G$.
 - (a) Show that the normalizer of X in G

$$N(X,G) = \{g \in G | g \circ X = X \circ g\}$$

is a subgroup of G.

(b) Show that the centre of G

$$Z(G) = \{g \in G | h \circ g = g \circ h \text{ for all } h \in G\}$$

is a subgroup of G.

- 3. Determine $C(\{(1,2,3),(1,3,2)\},S_3)$ and $N(\{(1,2,3),(1,3,2)\},S_3)$
- 4. Let \circ be an operation on the rationals \mathbb{Q} defined as follows:

$$a \circ b = ab + 2(a+b) + 2,$$

where addition and multiplication are the regular operations on \mathbb{Q} .

- (a) Show that \mathbb{Q} is a monoid with respect to the operation \circ . You may use that $(\mathbb{Q}, +, 0, x \mapsto -x)$ and $(\mathbb{Q}, \cdot, 1, x \mapsto x^{-1})$ are commutative groups.
- (b) Is (\mathbb{Q}, \circ) commutative?
- (c) Determine the invertible elements.