Algebra and discrete mathematics, homework sheet 6 Due: 01 April 2014, 8:45

You can hand in alone or in groups of two; specify names and student numbers. To hand in send email to tanja@hyperelliptic.org with your program. Please include your program as a .txt or .sage file or save it as a worksheet.

If K is a field then K.extension() generates an extension field over K. Note that this command wants you to specify the variable name of the extension field, i.e. L.=K.extension(). Check the documentation to see what arguments go into the ().

Note that you require an irreducible polynomial for this. To generate a field which contains a third root of 1, i.e. a number ζ satisfying $\zeta^3 = 1$ you would like to use K.<a>=QQ.extension(x^3-1) but that gives an error since x^3-1 is not irreducible. Use (x^3-1).factor() to get the irreducible factors and use the correct one.

matrix([[1,2],[3,4]]) creates the 2×2 matrix $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

- 1. Generate an extension field of \mathbb{Q} containing α satisfying $\alpha^3 = 2$, i.e. $\mathbb{Q}(\sqrt[3]{2})$. What is the extension degree, i.e. the dimension of this field over \mathbb{Q} as a vector space.
- 2. Generate an extension field of \mathbb{Q} containing ζ satisfying $\zeta^3 = 1$. What is the extension degree, i.e. the dimension of this field over \mathbb{Q} as a vector space.
- 3. Prove that $\beta = \frac{1}{\sqrt{2}} + \sqrt{3}$ and $\gamma = \sqrt[3]{3} \sqrt{3}$ are algebraic numbers using the algorithm of example 7.4.43 for this. For this part, please expand the powers of β and γ by hand and use sage to check that that's correct. Then use sage to solve the linear algebra part. Finally use .minpoly() to check your results.
- 4. Show that the quotient ring $\mathbb{Q}[X]/(X^2 + X + 2)$ is isomorphic to $\mathbb{Q}(\sqrt{-7})$. I.e. create both structures in sage and ask sage whether they are isomorphic.