
Chapter 1

Number Theory and Algebra

1.1 Introduction

Most of the concepts of discrete mathematics belong to the areas of combinatorics, number
theory and algebra. In Chapter ?? we studied the first area. Now we turn our attention to
algebra and number theory and introduce the concepts in increasing level of complexity,
starting with groups, rings and fields, providing the ring of polynomials as a long example
and concluding with vector spaces. In the examples and applications of the theory we
obtain almost all the necessary number-theoretic background as well.
The material of this chapter is very standard and can be found in any textbook on algebra
or number theory. Some recommended references are:

• K. Ireland, M. Rosen “A Classical Introduction to Modern Number Theory”,
Springer.

• N. Jacobson, “Basic Algebra”, W. H. Freeman.

• S. Lang, “Algebra”, Springer.

• S. Lang, “Undergraduate Algebra”, Springer.

1.2 Introduction to groups

In the previous chapter we introduced sets. Some of the most familiar sets like the
integers or the reals come with more structure. We are used to adding or subtracting
numbers to obtain their sum or difference respectively, which is again a number; we note
that addition is inverse to subtraction. When we multiply or divide two non-zero reals
we obtain another real; we note that multiplication is inverse to division. So there is
some similarity between the ways of operating in a set. Algebra is about identifying such
common structures and classifying them. One big advantage of this approach is that
theorems that can be shown to hold, using only the definition of the abstract concept
automatically apply to every concrete instantiation – let it be the integers with the
operation addition, the reals with the operation multiplication or, as we will see, the
rotations and reflections of an equilateral triangle with the operation of composition.
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Definition 1 (Group)
A set G is a group with respect to the operation ◦ if

1. G is closed under ◦: for all a, b ∈ G one has a ◦ b ∈ G.

2. Associativity: for all a, b, c ∈ G one has (a ◦ b) ◦ c = a ◦ (b ◦ c).

3. Neutral element: there exists an element e ∈ G so that for all a ∈ G one has
a ◦ e = e ◦ a = a.

4. Inverse: for all a ∈ G there exists an element inv(a) ∈ G with a ◦ inv(a) = e and
inv(a) ◦ a = e.

We use (G, ◦) as a shorthand to state that G is a group with respect to ◦.
A group G is called commutative or abelian if for all a, b ∈ G one has

a ◦ b = b ◦ a.

Note that associativity allows any rearrangement of parentheses, e.g.

(a ◦ b) ◦ (c ◦ d) = a ◦ (b ◦ (c ◦ d)) = a ◦ ((b ◦ c) ◦ d).

The neutral element of a group is unique; assume on the contrary that both e and e′

satisfy a ◦ e = e ◦ a = a and a ◦ e′ = e′ ◦ a = a for any group element a ∈ G. Letting e′

and then e play the role of a we obtain

e′ = e ◦ e′ = e, i.e. e = e′.

The inverse of an element is unique, i.e. if inv(a) and inv′(a) are both inverses of a, then
inv(a) = e ◦ inv(a) = inv′(a) ◦ a) ◦ inv(a) = inv′(a) ◦ (a ◦ inv(a)) = inv′(a) ◦ e = inv′(a).
The inverse of the neutral element is the neutral element itself since by definition of the
inverse element e◦ inv(e) = e while the definition of the neutral element gives e◦ inv(e) =
inv(e), so e = inv(e).
Inversion changes the order of the elements inv(a ◦ b) = inv(b) ◦ inv(a); we show that by
direct computation using associativity:

(a ◦ b) ◦ (inv(b) ◦ inv(a)) = a ◦ (b ◦ inv(b)) ◦ inv(a) = a ◦ e ◦ inv(a) = a ◦ inv(a) = e.

Applying inv(·) twice leads to the original element:

inv(inv(a)) = inv(inv(a))(◦inv(a) ◦ a) = (inv(inv(a)) ◦ inv(a)) ◦ a = e ◦ a = a.

Example 2 The integers ZZ form a group with respect to +:

1. If we add two integers a, b ∈ ZZ the result is again an integer, so the integers are
closed under addition.

2. Associativity: We have (a+ b) + c = a+ (b+ c).

3. Neutral element: Adding 0 to an integer does not change its value and 0 ∈ ZZ, so
0 ∈ ZZ is the neutral element.
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4. Inverse element: The negative of an integer a ∈ ZZ is again an integer (by the very
definition of the integers) and we have a+ (−a) = 0 and thus inv(a) = −a.

5. Since the order of summation does not matter, a + b = b + a for all a, b ∈ ZZ, we
even have that ZZ is commutative.

The natural numbers IN do not form a group with respect to + since there are no inverse
elements. Consider IN as subset of ZZ; if a ∈ IN\{0}, i.e. a > 0, then −a < 0 and thus not
in IN which means that that IN does not fulfill the fourth condition. Sets which are closed
under an operation which is associative are referred to as semigroups. A monoid is a semi-
group with a neutral element, so the natural numbers form a monoid. Another example
of a monoid is that the integers form a monoid with respect to multiplication since no ele-
ment other than 1 has an inverse, but ZZ is closed under · and the operation is associative.

We now state some very common examples to show that groups are quite familiar objects.
We use ’abelian group’ and ’commutative group’ interchangeably; this is common practice
in mathematics.

Example 3 1. The rationals Q form an abelian group with respect to +.

2. The reals IR form an abelian group with respect to +.

3. The complex numbers C form an abelian group with respect to +.

4. The set obtained by removing 0 from Q is usually denoted by Q∗ = Q\{0}. Similarly
one defines IR∗ and C∗.

We observe that the product of two rationals is again rational, that 1 · a = a,
that every fraction a/b 6= 0 can be inverted to b/a with (a/b) · (b/a) = 1, and
that (a/b) · (c/d) = (c/d) · (a/b). So Q∗ is a commutative group with respect to
multiplication.

5. IR∗ is a commutative group with respect to multiplication.

6. C∗ is a commutative group with respect to multiplication.

We have not yet defined polynomials. Readers not familiar with this concept should skip
this example but for the others it might be enlightening. We provide an extensive study
of polynomials over a field in Section 1.8.

Example 4 The set of polynomials C[x] in one variable x over the complex numbers C
is a commutative group with respect to coefficientwise addition.

1. The set is closed under the operation +:

n∑
i=0

aix
i +

m∑
i=0

bix
i =

max{n,m}∑
i=0

(ai + bi)x
i,

where the undefined coefficients ai for i > n and bi for i > m are put to zero. The
result is again a polynomial and the coefficients are in C , since C forms a group
with respect to the same addition +.
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2. Associativity is inherited from (C ,+) as(
n∑

i=0

aix
i +

m∑
i=0

bix
i

)
+

l∑
i=0

cix
i =

max{m,n,l}∑
i=0

((ai + bi) + ci)x
i

=

max{m,n,l}∑
i=0

(ai + (bi + ci))x
i =

n∑
i=0

aix
i +

(
m∑

i=0

bix
i +

l∑
i=0

cix
i

)
,

where the missing coefficients are put to zero.

3. Neutral element:

e =
0∑

i=0

0xi = 0 ∈ C[x].

4. Inverse element: The inverse of
∑n

i=0 aix
i ∈ C[x] is given by

∑n
i=0(−ai)x

i ∈ C[x].

Example 5 We consider the set of multiples of 3, which is defined by 3ZZ = {3z | z ∈ ZZ}.
We now show that this set forms a group under addition.
Let a and b be in 3ZZ, so there exist a′, b′ ∈ ZZ with a = 3a′ and b = 3b′.

1. a+ b = 3a′ + 3b′ = 3(a′ + b′) which is again in 3ZZ as 3(a′ + b′) is a multiple of 3.

2. Associativity follows from the associativity in ZZ.

3. The neutral element is 0 as in the integers. Since 0 is divisible by 3 we have 0 ∈ 3ZZ.

4. The inverse of a = 3a′ is −a = 3(−a′) ∈ 3ZZ.

5. Commutativity follows from the commutativity in ZZ.

Example 6 (Symmetry operations of equilateral triangle)
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Symmetry operations of the equilateral triangle
are maps that do not change the shape of the
triangle. There are 6 different such maps:
id: identity map,
m1: reflection in axis through 1,
m2: reflection in axis through 2,
m3: reflection in axis through 3,
r1: clockwise rotation by 120◦ mapping 1 to 3,
r2: clockwise rotation by 240◦ mapping 1 to 2.

For example:
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We now investigate whether the set of symmetry operations on the equilateral triangle
forms a group with respect to composition. The set is closed under composition: There
are no other symmetry operations, so the result of the composition of two operations must
again be one of these operations. For further reference we give a table with all results
of composing two transformations. The symbol for composition is ◦. We recall that for
maps we write r1 ◦ m1 if first m1 and then r1 is executed. The table is to be read as
follows: each table entry is the result of performing the operation stated in the same row
in the leftmost column first, followed by the one in the same column in the top row. E.g.
r1 ◦ m1 is found in the row of m1 and the column of r1 and equals m2, which can be
checked directly.

◦ id m1 m2 m3 r1 r2

id id m1 m2 m3 r1 r2
m1 m1 id r1 r2 m2 m3

m2 m2 r2 id r1 m3 m1

m3 m3 r1 r2 id m1 m2

r1 r1 m3 m1 m2 r2 id
r2 r2 m2 m3 m1 id r1

Proving associativity with such a group table is cumbersome but possible since we have
only finitely many group elements. As an example let us check

m1 ◦ (m2 ◦m1) = m1 ◦ r1 = m3 = r2 ◦m1 = (m1 ◦m2) ◦m1

which shows associativity in this case. The remaining cases can be checked the same way.
Obviously the identity map id is the neutral element of the group.
For each symmetric transformation there exists an inverse one. This can be seen from
the table – and by direct inspection. The reflections mi = inv(mi) are their own inverses
while inv(r1) = r2 and inv(r2) = r1.
So the symmetric transformations on a equilateral triangle form a group with respect to
◦. It is commonly called S3, the symmetry group of a triangle. It is interesting to note
that (S3, ◦) is not commutative:

m1 ◦m2 = r2 6= r1 = m2 ◦m1.

We will encounter group tables like in the previous example more often in the course.
They offer a convenient way of stating group laws for finite groups. For an entertaining
example have a look at “Group Theory in the Bedroom – An insomniac’s guide to the
curious mathematics of mattress flipping” by Brian Hayes which appeared in American
Scientist, September-October 2005, volume 93, page 395.

Example 7 Let (G1, ◦1) and (G2, ◦2) be groups. The Cartesian product G1 × G2 of G1

and G2 is defined to be the set

G1 ×G2 = {(a1, a2)|a1 ∈ G1, a2 ∈ G2}.

The operation ◦ defined by

(a1, a2) ◦ (b1, b2) = ((a1 ◦1 b1), (a2 ◦2 b2))

turns G1 ×G2 into a group, called the direct product of G1 and G2 . The detailed proof
is posed as Exercise 27 e) below.
The same holds for products of finitely many groups.
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A useful tool is the cancellation rule.

Lemma 8 (Cancellation rule)
Let (G, ◦) be a group and let a, b, c ∈ G. If a ◦ b = a ◦ c then b = c.

Proof. The proof is posed as Exercise 27 d). 2

Definition 9 (Subgroup)
Let (G, ◦) be a group. A subset G′ of G is a subgroup of G if G′ is a group with respect
to ◦.

Lemma 10 Let (G, ◦) be a group. A subset G′ ⊆ G is a subgroup of G if and only if the
following three conditions are satisfied:

1. The neutral element e of G is in G′.

2. For all a, b ∈ G′ we have a ◦ b ∈ G′.

3. For all a ∈ G′ we have inv(a) ∈ G′.

If G is commutative then so is G′.

Proof. Let G′ ⊆ G be a group. Then it must have a neutral element and by the
uniqueness of the neutral element we obtain e ∈ G′. The other two conditions are the
same as in the definition of a group.

Conversely, let G′ ⊆ G satisfy the above conditions. The only condition of the definition
that is missing is associativity. We know that G′ is contained in G which is associative,
so by the associativity of G we have for all a′, b′, c′ ∈ G′ ⊆ G a ◦ (b ◦ c) = (a ◦ b) ◦ c which
gives associativity in G′. Similarly, if G is commutative then this property is inherited
by the subgroup. 2

Remark 11 The converse of the last statement in the lemma does not hold; there are
non-commutative groups which have commutative subgroups. See Example 16.

There is an equivalent version which is sometimes easier to use.

Lemma 12 Let (G, ◦) be a group. A subset G′ ⊆ G is a subgroup of G if and only if the
following two conditions are satisfied:

1. The neutral element e of G is in G′.

2. For all a, b ∈ G′ we have a ◦ inv(b) ∈ G′.
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Proof. Let G′ ⊆ G be a group. Like before we get e ∈ G′. For every b ∈ G′ we must have
inv(b) ∈ G′ and since a group is closed and a, inv(b) ∈ G′ we must have a ◦ inv(b) ∈ G′.
Assume now that G′ ⊆ G satisfies the conditions. Like in the previous lemma we
obtain associativity for G′. We need to show that G′ is closed under ◦ and that inverses
exist in G′. The latter one is seen since e ∈ G′ and by the second condition thus
e ◦ inv(b) = inv(b) ∈ G′. Consequently, for any a, b ∈ G′ we have a, inv(b) ∈ G′ and by
the second condition we obtain a ◦ inv(inv(b)) = a ◦ b ∈ G′, so G′ is closed. 2

Example 13 Let G be a group and let e ∈ G be the neutral element. We have two
(trivial) subgroups of G, namely G1 = {e} ⊂ G and G2 = G itself. The latter one is
clearly a group. Let us check G1 now. Since e ◦ e = e we have inv(e) = e and so using
the criterion from Lemma 12 we only need to see that e ◦ inv(e) = e ◦ e = e is indeed in
G1 = {e} which apparently holds.

If we want to exclude the trivial subgroups considered in the previous example we speak
of proper subgroups.

Example 14 We have seen that (C ,+) forms a group. With Lemma 10, the observation
that 0 ∈ ZZ ⊂ Q ⊂ IR ⊂ C , and checking that in all these sets addition and inversion is
closed we get the earlier obtained result that (ZZ,+), (Q,+), and (IR,+) are groups.

Example 15 We have seen that (ZZ,+) forms a group and that 5ZZ ⊂ ZZ. The neutral
element of ZZ is 0 which is also in 5ZZ as 0 = 5 · 0. Let a, b ∈ 5ZZ, i.e. a = 5a′, b = 5b′.
Then

a ◦ inv(b) = a+ (−b) = 5a′ − 5b′ = 5(a′ − b′) ∈ 5ZZ

and so (5ZZ,+) forms a subgroup of (ZZ,+) by Lemma 12.

Example 16 (Subgroups of S3)
In Example 6 we considered S3, the group of symmetric transformations of the equilateral
triangle, as an example of a non-abelian group. We now state all subgroups of S3.
Apparently ({id}, ◦) satisfies the criteria of Lemma 12 and thus is a subgroup.
The reflections are self-inverse and thus ({id,m1}, ◦), ({id,m2}, ◦), and ({id,m3}, ◦) are
further subgroups.
If we want a subgroup containing r1 then it must also contain r1 ◦ r1 = r2 by the second
criterion and any combination of them. Since the rotations are inverse to each other and
r2 ◦ r2 = r1 these three elements are sufficient leading to the subgroup ({id, r1, r2}, ◦).
As soon as we combine two different reflections or one reflection with a rotation and try to
obtain a subgroup containing them, the second criterion dictates that we obtain the whole
group. Thus the sixth and last subgroup is the full group ({id,m1,m2,m3, r1, r2}, ◦) =
(S3, ◦).
It is interesting to note that all proper subgroups are commutative while the full group is
not.

In the example we constructed subgroups starting from one element a ∈ G and considering
the elements obtained as a◦a etc. For a natural number m ∈ IN we introduce the notation
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[m]a to denote the m-fold composition of a with itself:

[m]a = a ◦ a ◦ · · · ◦ a︸ ︷︷ ︸
m− copies of a

.

We extend this to negative scalars m as [m]a = [−m]inv(a) for m < 0.
The set of all such scalar multiples of a is denoted by

〈a〉 = {[m]a | m ∈ ZZ} .

Definition 17 (Cyclic group)
A group (G, ◦) is called a cyclic group if there exists an element g ∈ G so that

G = 〈g〉.

A group element g with G = 〈g〉 is called a generator of G.
Let a ∈ G. The set 〈a〉 is called the cyclic subgroup generated by a.

The following lemma shows that the notion “subgroup” is justified since 〈a〉 is indeed a
subgroup of G.

Lemma 18
Let (G, ◦) be a group and let a ∈ G. The set 〈a〉 is a commutative subgroup of G.

Proof. The neutral element e = [0]a is contained in 〈a〉. Since inv(a) = [−1]a we have
inv([m]a) = [−m]a and

[m]a ◦ inv([n]a) = [m]a ◦ [−n]a = [m− n]a ∈ 〈a〉

as m− n ∈ ZZ and the result follows by Lemma 12.
Since ZZ is abelian and [m]a ◦ [n]a = [m+ n]a = [n]a ◦ [m]a also 〈a〉 is abelian. 2

Example 19 1. Any integer m can be written as m = 1 + 1 + · · ·+ 1 = [m]1. So the
group (ZZ,+) is cyclic and generated by 1. Similarly also −1 is a generator.

2. (3ZZ,+) is cyclic and generated by 3.

3. For any integer n the set (nZZ,+) is a cyclic group and generated by n.

4. (Q,+) is not cyclic; one cannot find a generator for this group. It contains (ZZ,+)
and (3ZZ,+) as cyclic subgroups.

5. The subgroup ({id, r1, r2}, ◦) of S3 is generated by r1. Another generator is r2.

Definition 20 (Order of element)
Let (G, ◦) be a group and let a ∈ G. If there exists an m ∈ IN such that [m]a = e then a
has finite order. The smallest such m is called the order of a, denoted by ord(a) = m.
If no such number exists then a has infinite order.
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Example 21 In S3 every element has finite order. Since m1◦m1 = id we have ord(m1) =
2 = ord(m2) = ord(m3). The rotations have order 3 since r1◦r1 = r2 6= id but r1◦r1◦r1 =
r2 ◦ r1 = id.

Definition 22 (Order of group )
Let (G, ◦) be a group. The order of G is the cardinality of G.

If a group has finite order then there are only finitely many elements in it and thus each
element must have finite order. The converse does not hold: There are infinite groups
which contain elements of finite order.

For discrete mathematics finite groups are particularly interesting. Therefore, we now
investigate some details of finite groups. The groups we encounter later on are mostly
abelian, so we give some results only for this case. The interested reader may consult any
of the algebra books mentioned in the introduction for the general case.

There is a nice connection between the order of a group and the order of an element given
by the following lemma.

Lemma 23 Let (G, ◦) be a finite abelian group of order |G| = n.

For all a ∈ G one has [n]a = e.

Proof. Let a ∈ G. Since G is finite of order n, it can be written as G = {a1, a2, . . . , an}.
The results a ◦ a1, a ◦ a2, a ◦ a3, . . . , a ◦ an are all distinct as from a ◦ ai = a ◦ aj the
cancellation rule gives ai = aj. There are n results, so we can also write G as G =
{a ◦ a1, a ◦ a2, a ◦ a3, . . . , a ◦ an}.
We now take the product over all elements of G – the left side in the representation
involving a and the right side without – and use that the group is abelian so that we can
re-arrange the order of the elements.

(a ◦ a1) ◦ (a ◦ a2) ◦ (a ◦ a3) ◦ · · · ◦ (a ◦ an) = a1 ◦ a2 ◦ a3 ◦ · · · ◦ an,

([n]a) ◦ (a1 ◦ a2 ◦ a3 ◦ · · · ◦ an) = a1 ◦ a2 ◦ a3 ◦ · · · ◦ an.

Using the cancellation rule we obtain

[n]a = e

which proves the claim. 2

The lemma is actually a special case of Lagrange’s Theorem (Theorem 46).

Lemma 24 Let (G, ◦) be a group and let a ∈ G. If [m]a = e then ord(a) | m.

In particular if G is finite with |G| = n then for all a ∈ G one has ord(a)|n.
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Proof. Assume on the contrary that m = k ord(a) + r for 0 < r < ord(a). Then

e = [m]a = [k ord(a) + r]a = [k ord(a)]a ◦ [r]a = e ◦ [r]a = [r]a,

so e = [r]a which contradicts the minimality of ord(a).

By Lemma 23 for all group elements a we have [n]a = e. By the first part of the lemma
we obtain ord(a)|n. 2

The converse of this lemma is not true in general. For m|ord(G) there need not exist an
element a ∈ G of order m. Only for prime numbers Cauchy’s Theorem (Theorem 55)
guarantees the existence of an element with that order.

Lagrange’s and Cauchy’s theorems will both be presented in Section 1.4.

Definition 25 (Exponent)
Let (G, ◦) be a finite group. The smallest m ∈ IN such that [m]a = e for all a ∈ G is
called the exponent of G.

Example 26 The symmetry group (S3, ◦) is finite. The elements have order 2 and 3,
therefore [6]a = id for any a ∈ S3. No smaller integer with this property exists since it
must be divisible by 2 and 3, thus S3 has exponent 6.

In more generality let g1, g2, . . . , gk be elements of a group G with orders m1,m2, . . . ,mk

respectively. The exponent of G must be divisible by the least common multiple
lcm(m1,m2, . . . ,mk) of the orders.

Exercise 27 a) Consider the subset ZZ[i] of the complex numbers given by

ZZ[i] = {a+ bi ∈ C |a, b ∈ ZZ}.

Show that ZZ[i] is a subgroup of (C ,+).

b) Find all symmetric transformations of the square and show that they form a group
with respect to composition. Give the group table. State all subgroups.
Compute the order of this group and the exponent.

c) Find all symmetry operations of a rectangle which is not a square and show that they
form a group with respect to composition. Give the group table. State all subgroups.
Compute the order of this group and the exponent. You do not need to prove associa-
tivity.

d) Prove the cancellation rule, Lemma 8.

e) Let (G1, ◦1) and (G2, ◦2) be groups. Give all details of the proof that the Cartesian
product G1 ×G2 is a group.
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1.3 Modular arithmetic

We briefly pause our algebraic considerations and introduce modular arithmetic in ZZ and
consider quotient groups in general.
We have seen that the relation a ∼ b ⇔ 3|(a − b) is an equivalence relation. We now
study such relations systematically for arbitrary numbers n in place of 3 and introduce
names for the different concepts.

Definition 28 (Modulus)
Let n, a, b be integers. If n divides (a− b) we write

a ≡ b mod n,

read “a is equivalent to b modulo n”. In such a relation, the integer n is called the
modulus.
The equivalence classes under ≡ are called residue classes modulo n.

Example 29 We have 12 ≡ 27 mod 5 since 12− 27 = −15 is divisible by 5.

Since any number which is divisible by n is also divisible by −n we restrict to positive
integers n in most of the following considerations.
We have a ≡ b mod n exactly if a and b have the same remainder under division by n,
i.e. if we write a = a′n+ ra and b = b′n+ rb with minimal remainders 0 ≤ ra, rb < n then
ra = rb.
We often represent the residue classes by the smallest non-negative integer in the class,
i.e. for 0 ≤ r < n we let

r̄ = {a ∈ ZZ|a = a′n+ r},
where the notation assumes that the modulus n is fixed.
One can combine the operations + and · with modular reduction. The following lemma
shows that this is compatible.

Lemma 30 Let a, b, n ∈ ZZ with a = a′n+ ra, b = b′n+ rb, where the remainders are not
necessarily minimal. We have the following equivalences

1. (a+ b) ≡ (ra + rb) mod n,

2. (a · b) ≡ (ra · rb) mod n.

Proof. The proof is left the the reader as Exercise 38 a). 2

So we can also define operations + and · on the residue classes and the lemma shows that
one can work with any representative of the class.

Example 31 1. Let n = 6. A complete set of residue classes is given by

{0̄, 1̄, 2̄, 3̄, 4̄, 5̄}.

To determine the value of 3̄ + 4̄, we find one element in the resulting class, e.g.
3 + 4 = 7 and then reduce it modulo 6 to find the smallest remainder, here 7 ≡
1 mod 6. So, as classes: 3̄ + 4̄ = 1̄.
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Multiplication works the same: To find the resulting class of 3̄ · 4̄ we multiply the
representatives of the classes 3 · 4 = 12 and reduce the result modulo 6, so 3̄ · 4̄ = 0̄.

The complete tables of addition and multiplication of classes look as follows:

+ 0̄ 1̄ 2̄ 3̄ 4̄ 5̄

0̄ 0̄ 1̄ 2̄ 3̄ 4̄ 5̄
1̄ 1̄ 2̄ 3̄ 4̄ 5̄ 0̄
2̄ 2̄ 3̄ 4̄ 5̄ 0̄ 1̄
3̄ 3̄ 4̄ 5̄ 0̄ 1̄ 2̄
4̄ 4̄ 5̄ 0̄ 1̄ 2̄ 3̄
5̄ 5̄ 0̄ 1̄ 2̄ 3̄ 4̄

· 0̄ 1̄ 2̄ 3̄ 4̄ 5̄

0̄ 0̄ 0̄ 0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 2̄ 3̄ 4̄ 5̄
2̄ 0̄ 2̄ 4̄ 0̄ 2̄ 4̄
3̄ 0̄ 3̄ 0̄ 3̄ 0̄ 3̄
4̄ 0̄ 4̄ 2̄ 0̄ 4̄ 2̄
5̄ 0̄ 5̄ 4̄ 3̄ 2̄ 1̄

The set {0̄, 1̄, 2̄, 3̄, 4̄, 5̄} forms an abelian group under addition – the table shows that
the set is closed under this operation, 0̄ is the neutral element and each element has
an inverse. Associativity and commutativity are inherited from ZZ.

The set does not does not form a group under multiplication. The neutral element
is 1̄ but there are elements that do not have an inverse, namely there are no inverses
of 0̄, 2̄, 3̄, and 4̄.

The subset {1̄, 5̄} forms a group under multiplication with 1̄ as neutral element and
5̄ · 5̄ = 1̄.

2. We now do the same considerations modulo 3 and demonstrate, that one can also
use other representatives for the classes, e.g. {−1̄, 0̄, 1̄} can be used just as well as
the more standard choice {0̄, 1̄, 2̄}.

+ −1̄ 0̄ 1̄

−1̄ 1̄ −1̄ 0̄
0̄ −1̄ 0̄ 1̄
1̄ 0̄ 1̄ −1̄

· −1̄ 0̄ 1̄

−1̄ 1̄ 0̄ 1̄
0̄ 0̄ 0̄ 0̄
1̄ −1̄ 0̄ 1̄

We see that ({−1̄, 0̄, 1̄},+) and ({−1̄, 1̄}, ·) are both abelian groups.

These examples can be generalized.

Lemma 32 Let n ∈ ZZ be positive. The residue classes modulo n form a commutative
group with respect to addition, where the addition is defined as

r̄1 + r̄2 = r̄3 ⇔ r1 + r2 ≡ r3 mod n

and r3 is the unique representative of the class containing r1 + r2.

Proof. We first have to show that the operation is well-defined, i.e. that for any element
in the class of r̄1 and for any element in the class of r̄2 the result is in the same class r̄3. So
let a ∈ r̄1, b ∈ r̄2, then there exist integers a′ and b′ so that a = a′n+ r1 and b = b′n+ r2.
Their sum is in the class of a+ b = (a′n+ r1)+(b′n+ r2) = (a′+ b′)n+ r1 + r2 ≡ r1 + r2 ≡
r3 mod n by definition of r3.
The neutral element is 0̄ and the inverse of r̄ is the residue class containing −r. If one
uses representatives 0 ≤ r < n then for r 6= 0 the inverse is n− r.

12



Associativity and commutativity follow from ZZ. 2

The example with n = 6 demonstrated that one cannot hope for the same generality for
multiplication. Analyzing which elements besides 0̄ do not have an inverse one sees that
those are exactly the elements which have a factor in common with 6.

Lemma 33 Let a, n ∈ ZZ be integers. The class containing a is invertible modulo n with
respect to multiplication · if and only if

gcd(n, a) = 1.

Proof. Let a = a′n + ra with 0 ≤ ra < n. We first observe that gcd(a, n) = gcd(ra, n)
because any divisor of a and n also divides linear combinations of them like a− a′n = ra.
Similarly any divisor of ra and n also divides a′n+ ra = a.
Let b = b′n+ rb with 0 ≤ rb < n be a candidate multiplicative inverse. Their product is

a · b = (a′n+ ra) · (b′n+ rb) = (a′b′n+ a′rb + b′ra)n+ rarb.

Let rarb be in the residue class of 0 ≤ rc < n. By the same considerations, gcd(a, n)
also divides rarb and rc. So if gcd(a, n) = k 6= 1 is non-trivial then k divides rc which
therefore cannot be 1 no matter which b is chosen.
Now let gcd(a, n) = 1. Let {r0, r1, . . . , rn−1} be a complete set of remainders modulo
n. The products a · ri are all different modulo n; because if a · ri ≡ a · rj mod n
then n|a(ri − rj) and since gcd(a, n) = 1 it must be that n|(ri − rj) which by the size
restrictions implies ri = rj. This means that there is one rl such that arl ≡ 1 mod n and
so a is invertible. 2

Definition 34 (Euler ϕ-function)
Let n ∈ ZZ be positive. We define the Euler ϕ-function ϕ(n) of n as the number of integers
a with 0 ≤ a < n and gcd(a, n) = 1.

Sometimes the Euler ϕ-function is also called Euler’s totient function.

Example 35 1. We have ϕ(7) = 7−1 = 6 since all positive integers < 7 are coprime
to 7.

2. Let p be a prime. Like in the previous example we have ϕ(p) = p− 1.

3. Let n = p2 be the square of a prime. The integers 0 ≤ a < n which have gcd(a, n) 6=
1 are exactly the multiples of p, i.e. p, 2p, 3p, . . . , (p−1)p. There are p2−1−(p−1) =
p(p− 1) numbers 0 ≤ a < n with gcd(a, n) = 1.

4. Let n = pq be the product of two different primes p and q. The integers a with
1 ≤ a ≤ pq − 1 and gcd(a, n) 6= 1 are multiples of p or q, precisely the numbers
p, 2p, 3p, . . . , (q−1)p, q, 2q, 3q, . . . (p−1)q. I.e. there are pq−1− (q−1)− (p−1) =
pq− p− q+ 1 = (p− 1)(q− 1) positive integers coprime to pq and smaller than pq.
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The Euler ϕ-function is a typical function of elementary number theory. The examples
in Example 35 can be generalized to the following lemma which we will not prove here
but in Section 1.5 after stating the Chinese Remainder Theorem 79.

Lemma 36 Let n = pe1
1 p

e2
2 p

e3
3 · · · per

r with p1, p2, . . . , pr distinct primes and positive expo-
nents e1, e2, . . . , er ∈ ZZ. We have

ϕ(n) =
r∏

i=1

(pei
i − p

ei−1
i ) = n ·

r∏
i=1

(
1− 1

pi

)
.

The following lemma gives a nice illustration of the use of modular reduction in proofs.

Lemma 37 For any nonzero a, b ∈ ZZ there exist m,n ∈ ZZ with |m| < |b| and |n| < |a|
so that

gcd(a, b) = ma+ nb.

Proof. Let d = gcd(a, b). For simplicity assume that a and b are positive. Put p = a/d
and q = b/d, then p and q are coprime. The q − 1 multiples p, 2p, 3p, . . . , (q − 1)p of p
are all not divisible by q and all in distinct residue classes modulo q. Since there are
q − 1 non-zero residue classes modulo q one of the multiples, say pm, is in the class of 1
modulo q, i.e. pm ≡ 1 mod q. This implies 1 = pm+ qn for some 1 ≤ n < p. Multiplying
both sides of this equation by d we obtain the desired equation d = am + bn, where
1 ≤ m < q ≤ b and 1 ≤ n < p ≤ a. For negative values of a or b similar considerations
hold. 2

This representation is often called Bézout’s identity and is obtained using the Extended
Euclidean Algorithm ?? which we will state later in this chapter and consider in detail
in Chapter ??. It is possible to extend Bézout’s identity to give a linear combination of
any number of elements.

Exercise 38 a) Prove Lemma 30.

b) Write addition and multiplication tables for arithmetic modulo 4 and modulo 8. How
many elements are invertible modulo 4 and modulo 8 respectively.

c) Compute ϕ(1001). You may use Lemma 36.

1.4 Advanced concepts of groups

Modular arithmetic as considered in the previous section is one example of considering
one group modulo a subgroup, in this case the group ZZ modulo nZZ for some integer
n. In this section we generalize the approach and show some properties of the resulting
constructs. The whole section is rather technical and the proofs can be skipped on first
reading but the results will be needed in later sections and chapters.
Let (G, ◦) be a group and let G′ be a subgroup. We define a relation ∼ on G by

a ∼ b⇔ a ◦ inv(b) ∈ G′. (1.1)

We observe that ∼ is an equivalence relation as it is

14



reflexive: a ∼ a as a ◦ inv(a) = e ∈ G′ since G′ is a subgroup.

symmetric: If a ∼ b then also b ∼ a, because with a ◦ inv(b) = c ∈ G′ also inv(c) =
inv(a ◦ inv(b)) = b ◦ inv(a) must be in G′ by the second criterion in Lemma 12.

transitive: If a ∼ b and b ∼ c then also a ∼ c because a◦inv(c) = a◦(inv(b)◦b)◦inv(c) =
(a ◦ inv(b)) ◦ (b ◦ inv(c)) must be in G′ as combination of the two group elements
a ◦ inv(b) and b ◦ inv(c).

The set of equivalence classes is denoted by G/G′ and we have

G/G′ = {a ◦G′|a ∈ G}.

Example 39 In Example 31 we considered ZZ/6ZZ and ZZ/3ZZ.

Lemma 40 Let (G, ◦) be an abelian group and let G′ be a subgroup. The set of equiva-
lence classes G/G′ forms an abelian group under the operation

◦′ : (a ◦G′) ◦′ (b ◦G′) = (a ◦ b) ◦G′

inherited from G.

Proof. We first need to show that the operation is well defined on the classes. Let
a′ ∈ a ◦ G′ and b′ ∈ b ◦ G′, so there exist c, d ∈ G′ so that a′ = a ◦ c and b′ = b ◦ d. The
result of a′ ◦ b′ is

a′ ◦ b′ = (a ◦ c) ◦ (b ◦ d) = (a ◦ b) ◦ (c ◦ d) ∈ (a ◦ b) ◦G′,

where in the last step we used associativity and commutativity of G and that c ◦ d ∈ G′.
So the resulting class is independent of the chosen representative.
The set G/G′ is closed under ◦′, associativity and commutativity are inherited from G.
The neutral element is G′ = e ◦ G′ since (a ◦ G′) ◦′ (e ◦ G′) = (a ◦ e) ◦ G′ = a ◦ G′. The
inverse element to a ◦G′ is inv(a) ◦G′. 2

Because ◦′ is so closely related to ◦ we drop the extra notation and use the same symbol
◦ for the group operation in G/G′.

Definition 41
Let (G, ◦) be an abelian group and let G′ be a subgroup. The group G/G′ = {a◦G′|a ∈ G}
is called the quotient group of G modulo G′.

With this theoretical background, the earlier proven fact that (ZZ/nZZ,+) is a group
follows as an easy corollary from Lemma 40.

Example 42 In Example 13 we saw that every group G has trivial subgroups, namely
G1 = {e} and G2 = G. The first one leads to equivalence classes which contain only one
element each, since a ∼ b requires a ◦ inv(b) ∈ G1, i.e. a ◦ inv(b) = e and thus a = b.
This means that G/{e} behaves like G itself.
The same considerations for G2 show that there is only one equivalence class which con-
tains all of G, so the quotient group G/G has only one element.
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The integers are not a group with respect to multiplication, so we cannot use this lemma
to deduce anything about ZZ/nZZ under multiplication. Example 31 showed that there
are subsets of ZZ/nZZ of elements that are invertible modulo n and that these subsets
formed groups.

Definition 43 (Multiplicative group modulo n)
Let n ∈ IN. We denote by (ZZ/nZZ)× the set of multiplicatively invertible elements modulo
n. By Lemma 33 we have with unique representatives for the equivalence classes

(ZZ/nZZ)× = {a+ nZZ | 0 ≤ a < n, gcd(a, n) = 1} .

Lemma 44 Let n ∈ ZZ. The set (ZZ/nZZ)× forms a commutative group under multiplica-
tion. It is called the multiplicative group modulo n. We have |(ZZ/nZZ)×| = ϕ(n).

Proof. We use the definition and Lemma 33. Let a + nZZ, b + nZZ ∈ (ZZ/nZZ)×, i.e.
gcd(a, n) = gcd(b, n) = 1. Since ab is coprime to n, so is the remainder of ab modulo n
and thus the set is closed under multiplication. Associativity and commutativity follow
from the same properties in ZZ. The neutral element is 1+nZZ which is clearly in the set.
By definition, the a’s are exactly those integers which are invertible modulo n and so
there exists a b with ab ≡ 1 mod n and (a+ nZZ)−1 = b+ nZZ. The second claim follows
from the definition of the Euler ϕ-function. 2

Since ϕ(n) is the cardinality of the multiplicative group modulo n we get Fermat’s little
theorem as a corollary of Lemma 23

Corollary 45 (Fermat’s Little Theorem)
Let n ∈ ZZ. For all a ∈ (ZZ/nZZ)× one has aϕ(n) ≡ 1 mod n.

The proof of the following theorem is rather technical and can be skipped on first reading.
However, the result is important.

Theorem 46 (Lagrange’s Theorem)
Let (G, ◦) be a finite group of order |G| = n.
Let G′ be a subgroup of G. The order of G′ divides n.

Proof. We use again the equivalence relation (1.1) a ∼ b if and only if a ◦ inv(b) ∈ G′

and decompose G into disjoint equivalence classes

G = H1 ∪H2 ∪ · · · ∪Hk,

for some number k. Since G′ is closed under ◦, the equivalence class of any b ∈ G′ equals
G′ and so we can assume H1 = G′.
For each equivalence class we can define a bijection between it and G′. Let c ∈ Hi for
some 1 ≤ i ≤ k, i.e.

Hi = {a ∈ G|c ◦ inv(a) ∈ G′}

and this gives us a map
ψc : Hi → G′, a 7→ c ◦ inv(a).
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By the definition of Hi we have c ◦ inv(a) ∈ G′ and so the map indeed maps to G′. It is
easy to give the inverse map ψ−1

c of ψc as

ψ−1
c : G′ → Hi, b 7→ inv(b) ◦ c.

Indeed

ψ−1
c (ψc(a)) = ψ−1

c (c ◦ inv(a)) = inv(c ◦ inv(a)) ◦ c = a ◦ inv(c) ◦ c = a

and

ψc(ψ
−1
c (b)) = ψc(inv(b) ◦ c) = c ◦ inv(inv(b) ◦ c) = c ◦ inv(c) ◦ b = b.

So |Hi| = |G′| for any 1 ≤ i ≤ k and from the above partition we have

|G| = |H1|+ |H2|+ · · ·+ |Hk| = k · |G′|

which proves the claim. 2

So we have that the order of any subgroup divides the group order.
The ψc’s in the previous proof were maps between sets. We now consider maps that
respect the group operation.

Definition 47 (Group homomorphism)
Let (G1, ◦1) and (G2, ◦2) be two groups and let ψ : G1 → G2 be a map between them.
It is a group homomorphism (or homomorphism) if for all a1, b1 ∈ G1 one has

ψ(a1 ◦1 b1) = ψ(a1) ◦2 ψ(b1).

A group homomorphism is an isomorphism if it is bijective.
Two groups G1, G2 are isomorphic, written G1

∼= G2, if there exists an isomorphism
between them.

Example 48 1. The map [3] : ZZ → 3ZZ, a 7→ 3a is a group homomorphism between
(ZZ,+) and (3ZZ,+). First we observe that the map is well-defined since each element
of ZZ is indeed mapped into 3ZZ. Since for all integers a and b we have 3(a + b) =
(3a) + (3b) the map is a homomorphism. It is easy to give the inverse map [1/3] :
3ZZ→ ZZ, a 7→ a/3. This map is actually well-defined since any a ∈ 3ZZ is divisible
by 3. So in fact ZZ and 3ZZ are isomorphic ZZ ∼= 3ZZ.

2. Let (G, ◦) be a group. For any integer n the map

[n] : G→ G, a 7→ [n]a

is a group homomorphism. Clearly, [n]a ∈ G for any a ∈ G and by the definition
of [n] it is a homomorphism.

A group homomorphism might map some elements to the neutral element in the target
group. These elements will play a special role later on.
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Definition 49 (Image and kernel of homomorphism)
Let (G1, ◦1) and (G2, ◦2) be two groups and let ψ : G1 → G2 be a group homomorphism.
The image of ψ, denoted Im(ψ), is the subset of G2 defined by

Im(ψ) = {ψ(a1) ∈ G2|a1 ∈ G1}.

The kernel of ψ, denoted Ker(ψ), is the subset of G1 that is mapped to the neutral element
e2 of G2

Ker(ψ) = {a1 ∈ G1|ψ(a1) = e2}.

Theorem 50 (First isomorphism theorem) Let (G1, ◦1) and (G2, ◦2) be abelian
groups and let ψ : G1 → G2 be a group homomorphism. The kernel of ψ is a subgroup of
G1 and Im(ψ) ∼= G1/Ker(ψ).

Proof. We use Lemma 12. Since e1 ◦1 a1 = a1 for any a1 ∈ G1 and by the definition of
homomorphisms we have

ψ(a1) = ψ(e1 ◦1 a1) = ψ(e1) ◦2 ψ(a1).

By the cancellation rule we get ψ(e1) = e2, the neutral element in G2. So e1 ∈ Ker(ψ).
We remark that for a1 ∈ G1 we have ψ(inv1(a1)) = inv2(ψ(a1)), where the first inverse
is with respect to ◦1 and the second one with respect to ◦2, as e2 = ψ(e1) = ψ(a1 ◦1
inv1(a1)) = ψ(a1) ◦2 ψ(inv1(a1)).
Let a1, b1 ∈ Ker(ψ), i.e. ψ(a1) = ψ(b1) = e2. We see that

ψ(a1 ◦1 inv1(b1)) = ψ(a1) ◦2 ψ(inv1(b1)) = e2 ◦2 inv2(ψ(b1)) = inv2(e2) = e2

and so a1 ◦1 inv1(b1) ∈ Ker(ψ).
To prove the isomorphism we construct a homomorphism between the sets and show that
an inverse map exists. Let

ψ′ : G/Ker(ψ)→ Im(ψ), ψ′(a1 ◦Ker(ψ)) = ψ(a1).

By definition of Im(ψ) indeed ψ′ maps to Im(ψ) and the map is well-defined since for
k ∈ Ker(ψ) we have ψ′((a1 ◦ k) ◦ Ker(ψ)) = ψ(a1 ◦ k) = ψ(a1) ◦ ψ(k) = ψ(a1) and so
the image is independent of the representative. Since ψ is a homomorphism so is ψ′. If
a2 ∈ Im(ψ) there must exist an a1 ∈ G with a2 = ψ(a1); a1 is unique up to elements from
Ker(ψ): If ψ(a1) = ψ(b1) = a2 then ψ(b1 ◦ inv1(a1)) = ψ(b1) ◦ inv2(ψ(a1)) = e2 and so
b1 ◦ inv1(a1) ∈ Ker(ψ) and a1 and b1 are in the same residue class modulo Ker(ψ). This
allows to define the inverse map (ψ′)−1 : Im(ψ)→ G/Ker(ψ) as (ψ′)−1(a2) = a1 ◦Ker(ψ)
if ψ(a1) = a2. 2

Example 51 Let ψ : G→ H be an isomorphism, i.e. ψ is injective and so Ker(ψ) = {e}
and surjective, i.e. Im(ψ) = H. Theorem 50 says that

H = Im(ψ) ∼= G/{e} ∼= G, i.e. H ∼= G

which we knew already from ψ being an isomorphism. So the lemma fits with our expec-
tation.
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Example 52 Let (G, ◦) be a group. The elements of order n for some integer n form a
group as they are the kernel of the homomorphism

[n] : G→ G, a 7→ [n]a.

Definition 53 (Product of groups)
Let (G, ◦) be a group and let G′ and G′′ be subgroups of G. The set

G′G′′ = {a′ ◦ a′′|a′ ∈ G′, a′′ ∈ G′′}

is called the product of G′ and G′′.

Lemma 54 Let (G, ◦) be an abelian group and let G′ and G′′ be subgroups of G. The
product G′G′′ is a subgroup of G and

|G′G′′| = |G′| · |G′′|/|G′ ∩G′′|.

Proof. We use Lemma 12. Since G′ and G′′ are subgroups of G they both contain e and
thus e = e ◦ e ∈ G′G′′.
Let a′, b′ ∈ G′ and a′′, b′′ ∈ G′′. We show that with a′ ◦ a′′ ∈ G′G′′ and b′ ◦ b′′ ∈ G′G′′ also
(a′ ◦ a′′) ◦ inv(b′ ◦ b′′) is in G′G′′. Since G is abelian we can rearrange the last expression
to

(a′ ◦ a′′) ◦ inv(b′ ◦ b′′) = (a′ ◦ inv(b′)) ◦ (a′′ ◦ inv(b′))

and use that (a′ ◦ inv(b′)) ∈ G′ and (a′ ◦ inv(b′)) ∈ G′′ so that the result is indeed in G′G′′.

To prove the statement about the cardinality of G′G′′ we consider the following map
between the Cartesian product G′ ×G′′ and G′G′′:

ψ : G′ ×G′′ → G′G′′, (a′, a′′) 7→ a′ ◦ inv(a′′).

Since all groups involved are abelian and subgroups of G, this is a group homomorphism
and in particular G′G′′ = Im(ψ). The kernel consists of

Ker(ψ) = {(a′, a′′) ∈ G′ ×G′′|a′ ◦ inv(a′′) = e},

in other words of the tuples (a, a) such that a ∈ G′ ∩ G′′ and so the proof follows by
Theorem 50 and taking cardinalities. 2

The next theorem provides a partial inverse to Lagrange’s Theorem. The proof needs all
the concepts introduced so far.

Theorem 55 Cauchy’s Theorem
Let (G, ◦) be a finite abelian group of order n and let p be a prime dividing n.

There exists an element a ∈ G with ord(a) = p. The subgroup generated by this a is
cyclic of order p.
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Proof. Let G = {g1, g2, . . . , gn} and consider the finite product of groups Pm =
〈g1〉〈g2〉〈g3〉 · · · 〈gm〉 for some m ≤ n, which by m − 1-fold application of Lemma 54
is a subgroup of G. By the same lemma the cardinality is

|Pm| = |〈g1〉||〈g2〉||〈g3〉| · · · |〈gm〉|/km,

where km is an integer taking care of the cardinalities of the intersections.
By construction Pn contains all gi and since Pn is a subgroup of G we actually have
G = Pn, so we get

|G| = |Pn| = |〈g1〉||〈g2〉||〈g3〉| · · · |〈gn〉|/kn.

Since p is a prime and divides |G| it must also divide the product on the right hand
side, and by the primality it must divide one of the factors |〈gi〉| for one 1 ≤ i ≤ n. Let
c = |〈gi〉|/p and put a = [c]gi. By construction [p]a = [p]([c]gi) = [ordgi]gi = e and a 6= e.
2

Corollary 56 Every finite abelian group of prime order is cyclic.

Proof. Let |G| = p be a prime. There exists an element g ∈ G of order ord(g) = p and
thus G = 〈g〉. 2

Example 57 Let (G, ◦) be a cyclic group of order m. How many generators does G
have?
Since G is cyclic there exists a generator g, so let G = 〈g〉 = {[n]g | n ∈ ZZ}. For any
a = [n]g ∈ G we have [m]a = [n]([m]g) = e but if n has a non-trivial common divisor
with m then a ord(a) < n. So there are exactly |{0 ≤ n < m | gcd(n,m) = 1}| = ϕ(m)
generators.

Example 58 In Exercise 38 we considered the multiplicative group modulo 8 and found
that (ZZ/8ZZ)× = {1̄, 3̄, 5̄, 7̄} has order 4. The multiplication table shows that there is no
element of order 4 but that the orders are ord(1̄) = 1, ord(3̄) = 2, ord(5̄) = 2, ord(7̄) = 2.
This structure – a non-cyclic group of order 4 – is a famous example in the theory of
finite groups. It is called the Klein four-group.

Exercise 59 a) Let (G, ◦) be a group and let G1, G2 be two subgroups of it. Show that
their intersection is also a subgroup of G.
In fact one can even show that the intersection of arbitrarily many subgroups is a
subgroup.

b) Consider the group (ZZ/12ZZ,+). Find all subgroups. Note that Lagrange’s Theorem
helps to determine possible group orders.

c) The multiplicative group (ZZ/299ZZ)× is of order (13−1)(23−1) = 264 which is divisible
by 11. Find an element of order 11.

d) Let G be a group of order 13 · p, where p is a prime. State a randomized algorithm to
find an element of order p in G.
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1.5 Rings

We have seen that the integers form an abelian group with respect to addition and only
a semigroup with respect to multiplication and we have seen other sets on which we can
define more than one operation. Such structures are called rings if they satisfy some extra
conditions. The integers are a particularly familiar example of a ring. In the following
section we study fields, which are rings in which both are sets which are closed under two
different operations.

Definition 60 (Ring)
A set R is a ring with respect to two operations ◦, � denoted by (R, ◦, �) if

1. (R, ◦) is an abelian group.

2. (R, �) is a semi-group (closed under � and the associative rule holds).

3. The distributive laws hold in R:

Let a, b, c ∈ R. Then we must have

a � (b ◦ c) = (a � b) ◦ (a � c),
(a ◦ b) � c = (a � c) ◦ (b � c).

If there exists a neutral element e� with respect to � then R is called a ring with unity.
If � is commutative in R then R is called a commutative ring.

Example 61 The integers (ZZ,+, ·) form a ring. We have already seen that (ZZ,+) is an
abelian group and that (ZZ, ·) is a semi-group. It remains to be shown that the distributive
laws hold. We first observe that multiplication is commutative as can be seen in rearrang-
ing a · b = b+ b+ · · ·+ b (a times) and b = 1 + 1 + · · ·+ 1 (b times) to a · b = b · a. This
implies that only one of the two laws need to be checked explicitly.
By definition and commutativity of (ZZ,+) we have a · (b+ c) = (b+ c) + · · ·+ (b+ c) =
(b+ · · ·+ b) + (c+ · · ·+ c) = ab+ ac.
The number 1 is the neutral element with respect to multiplication since 1 · a = a · 1 = a.
To sum up, the integers form a commutative ring with unity.

Example 62 1. The rational numbers (Q,+, ·), the reals (IR,+, ·) and the complex
numbers (C ,+, ·) form commutative rings with 1.

2. Let n ∈ IN. The set nZZ of multiples of n forms a ring with addition and multipli-
cation as in ZZ: associativity, commutativity, and the distributive laws follow from
ZZ. We have shown that (nZZ,+) is a group. The only thing we need to check is
that the set is closed under multiplication which holds since an · bn = (abn)n is a
multiple of n.

3. In Example 4 we considered the additive group of polynomials C[x] over C . We can
define multiplication of polynomials by(

n∑
i=0

aix
i

)
·

(
m∑

i=0

bix
i

)
=

n+m∑
i=0

(
i∑

j=0

ajbi−j

)
xi,
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where ai = 0 for i > n and bi = 0 for i > m. The set C[x] is closed under
multiplication since all coefficients are again in C . Associativity can be checked by
direct computation and follows from associativity in C . The polynomial 1 ∈ C[x] is
the neutral element with respect to multiplication and the operation is commutative.
So, C[x] is a commutative ring with unity. We study polynomial rings in more
detail in Section 1.8.

4. Let n ∈ IN and consider the set ZZ/nZZ. We have seen in Lemma 32 that (ZZ/nZZ,+)
is an abelian group. Multiplication of residue classes is well-defined and closed by
Lemma 30. Associativity follows from associativity of (ZZ, ·). The residue class
1 + nZZ is the neutral element of multiplication. Commutativity and distributive
laws are inherited from (ZZ, ·). So (ZZ/nZZ,+, ·) is a commutative ring with unity
for any n.

5. Let (R, ◦R, �R) and (S, ◦S, �S) be rings. The Cartesian product R×S is defined by

R× S = {(r, s)|r ∈ R, s ∈ S}.

With the operations ◦ and � defined by

(r1, s1) ◦ (r2, s2) = ((r1 ◦R r2), (s1 ◦S s2))

(r1, s1) � (r2, s2) = ((r1 �R r2), (s1 �S s2))

the Cartesian product R×S is a ring. If both R and S are commutative rings then
so is R× S; if both are rings with unity then so is R× S.

This example can be generalized to arbitrarily many rings.

In a ring we have the following useful computation laws which we know very well for the
integers.

Lemma 63 Let (R, ◦, �) be a ring and let e◦ be the neutral element with respect to ◦. If
R is a ring with unity, let e� be the neutral element of �. We have for arbitrary a, b ∈ R:

1. e◦ � a = a � e◦ = e◦.

2. inv◦(e�) � a = a � inv◦(e�) = inv◦(a).

3. inv◦(a) � b = a � inv◦(b) = inv◦(a � b).

Proof. By the distributive laws we have

(e◦ � a) ◦ (e◦ � a) = (e◦ ◦ e◦) � a = e◦ � a = (e◦ � a) ◦ e◦.

By the cancellation rule, Lemma 8, it follows that

e◦ � a = e◦.

Similarly one proves a � e◦ = e◦.
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For the second result we use the definitions of e◦ and e�, the first result and the distributive
laws on

e◦ = e◦ � a = (e� ◦ inv◦(e�)) � a = (e� � a) ◦ (inv◦(e�) � a) = a ◦ (inv◦(e�) � a)

and add inv◦(a) on both sides from the left giving inv◦(a) = inv◦(e�) � a as claimed. The
proof for a � inv◦(e�) = inv◦(a) follows along the same lines.
The last result follows from the second and associativity

inv◦(a) � b = (a � inv◦(e�)) � b = a � (inv◦(e�) � b) = a � inv◦(b)

and
inv◦(a) � b = (inv◦(e�) � a) � b = inv◦(e�) � (a � b) = inv◦(a � b).

2

Definition 64 (Divisibility)
Let (R, ◦, �) be a ring and let a, b ∈ R. We say that a divides b, written a|b, if there exists
c ∈ R with

a � c = b.

Definition 65 (Domain, zero-product property)
Let (R, ◦, �) be a ring with unity. It is called a domain if e◦ 6= e� and there are no zero
divisors, i.e. if

a � b = e◦ implies a = e◦ or b = e◦.

This last property is called the zero-product property.

Definition 66 (Greatest common divisor)
Let R be a commutative ring and let a, b ∈ R. A greatest common divisor gcd(a, b) of a
and b is a common divisor of a and b so that for all common divisors c of a and b one
has that c|d.

In the integers we have that if a|b then also −a|b and the factorization of an integer is
unique only up to factors of −1 – even though one usually restricts to positive primes.
In general rings, greatest common divisors and factorizations can be unique only up to
invertible elements from R.

Definition 67 (Units)
Let (R, ◦, �) be a commutative ring with unity e�. An element a ∈ R is called a unit if
there exists an element b = inv�(a) ∈ R so that a � b = e�.
The set of units in R is denoted by R× and we have

R× = {a ∈ R| there exists an element b ∈ R so that a � b = e�}.

Example 68 The invertible elements in (ZZ/nZZ, ·) are exactly the elements in the mul-
tiplicative group modulo n, so the notation (ZZ/nZZ)× is consistent with these elements
being the units in (ZZ/nZZ, ·).

Lemma 69 Let (R, ◦, �) be a commutative ring with unity e�. The set of units R× of R
forms a group under �.
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Proof. Left to the reader as Exercise 4. 2

Lemma 70 Let (R, ◦, �) be a domain and let e◦ 6= a, b ∈ R. If a|b and b|a then there
exists a unit u ∈ R× so that a = b � u.

Proof. By the definition of divisibility, a|b and b|a imply that there exist c, d ∈ R with
b = a � c and a = b � d. The combination leads to

a � e� = a = b � d = (a � c) � d = a � (c � d).

Using distributive laws this gives a � (e� ◦ inv◦(c � d)) = e◦. Since R is a domain and
a 6= e◦, the zero-product property gives e� ◦ inv◦(c � d)) = e◦, i.e. e� = c � d, and so
c, d ∈ R× are units. 2

Modular arithmetic (cf. Section 1.3) is about computing with remainders of division by
an integer n. For the integers it is very easy to find unique representatives for the residue
classes, namely one uses the non-negative integers < n to represent their respective classes
and all classes are distinct. In general one cannot hope to find a canonical representative
for each class and so rings in which we can define a division with remainder in a unique
way deserve a special name.

Definition 71 (Euclidean domain)
Let (R, ◦, �) be a commutative domain and let v : R\{e◦} → ZZ+ be a function. The ring
R is called a Euclidean domain with respect to v if for each a, b ∈ R with b 6= e◦ one can
find q, r ∈ R with

a = q � b ◦ r and r = e◦ or v(r) < v(b).

In Euclidean domains any two elements have a greatest common divisor and one can
give an algorithm to determine it. The method to find greatest common divisors makes
extensive use of the following lemma.

Lemma 72 Let (R, ◦, �) be a Euclidean domain. Let a, b, q, r ∈ R with a = q � b ◦ r.
The set of common divisors of a and b equals the set of common divisors of b and r.

Proof. Let d|a and d|b which implies that d|(a ◦ inv◦(q � b)), i.e. d|r and so every divisor
of a and b also divides r. Reversing the same argument gives that every common divisor
f of b and r also divides the linear combination q � b ◦ r = a. 2

As a shorthand we speak of computing modulo b when using the remainder r of division
by b instead of a itself, so we write a ≡ r mod b and speak of r as the remainder. Since R
is Euclidean we can find a remainder r such that v(r) < v(b) or r = e◦. We use (a mod b)
to denote this (smallest) remainder.
Repeated application of this lemma leads to remainders ri with strictly decreasing values
under v and since v maps to the non-negative integers this process must eventually lead
to a remainder rj = 0. This recursive algorithm is known as Euclidean algorithm and will
be studied in much more algorithmic detail in Chapter ??.

Lemma 73 Let (R, ◦, �) be a Euclidean domain. For any two elements a, b ∈ R there
exists a greatest common divisor d = gcd(a, b) and d is unique up to units from R×.
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Proof. The sequence of values v(ri) of the remainders ri in the following algorithm is
strictly decreasing and consists of non-negative integers so it must terminate which means
that rj = e◦ for some j. By Lemma 72 we have that each two consecutive remainders ri−1

and ri have the same common divisors as a and b. Since rj = e◦ the common divisors of
a and b are the same as those of rj−1 and e◦. These are precisely all divisors of rj−1 and
a greatest common divisor is thus given by rj−1 itself.

Let d be another greatest common divisor of a and b. Then we have rj−1|d since d is
greatest common divisor and d|rj−1 since rj−1 is greatest common divisor. By Lemma 70
this means that there exists a unit u ∈ R× with d = u � rj−1. 2

Algorithm 74 (Euclid’s Algorithm)
IN: e◦ 6= a, b ∈ R
OUT: gcd(a, b)

1. i←0

2. r−1←a

3. r0←b

4. while ri 6= e◦

(a) i←i+ 1

(b) ri←(ri−2 mod ri−1) where ri−2 = qi � ri−1 ◦ ri with ri = e◦ or v(ri) < v(ri−1)

5. return ri−1

This algorithm must terminate since the size of the remainder is strictly decreasing until
ri = e◦ is reached. This implies that ri−1|ri−2 and by Lemma 72 this ri−1 is the greatest
common divisor of the input values a and b.

In Section 1.3 we gave a special version of the following result as Lemma 37. With
the help of the Euclidean algorithm we can not only generalize the result to arbitrary
Euclidean rings but also give a constructive proof of Bézout’s identity.

Lemma 75 Let R be a Euclidean domain with respect to v. For any non-zero a, b ∈ R
there exist m,n ∈ R so that

gcd(a, b) = m � a ◦ n � b.

Proof. Algorithm 74 produces a sequence of remainders ri and (implicitly) of quotients
qi with the property that ri−2 = qi � ri−1 ◦ ri. When the algorithm terminates we have
ri = e◦ and before that ri−3 = qi−1 � ri−2 ◦ ri−1, i.e. gcd(a, b) = ri−3 ◦ inv◦(qi−1 � ri−2).
Recursively replacing ri−2, ri−3 etc. by these linear combinations leads to an equation of
the requested form since the first equation was a = r−1 = q1 � r0 ◦ r1 = q1 � b ◦ r1. 2
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Example 76 Bézout’s identity leads to an efficient way of computing modular inverses.
Let a, n ∈ IN and let gcd(a, n) = 1. By Lemma 33 a is invertible modulo n and indeed
the previous lemma shows that there exists b,m such that

1 = gcd(a, n) = ab+ nm, i.e. 1 ≡ ab mod n,

so the b computed in Bézout’s identity is the inverse of a modulo n.

Lemma 77 Let R be a Euclidean domain and let a, b ∈ R so that a and b have no
non-trivial common divisor and let c ∈ R. If a|c and b|c then also (a � b)|c.

Proof. There exist k, l with c = a � k and c = b � l. If a and b are co-prime we have
gcd(a, b) = e� and by Lemma 75 there exist m,n ∈ R so that e� = m � a ◦ n � b.
This leads to c = a�k = (a�k)�e� = (a�k)�(m�a◦n�b) = (b�l)�(m�a)◦(a�k)�(n�b) =
(a � b) � ((m � l) ◦ (n � k)), so a � b divides c. 2

Example 78 In recreational mathematics one often encounters stories like the following
example:
A Chinese general has a fast way of “counting” the number of soldiers in his army.
He first lets them line up in rows of 11 and counts the number of soldiers in the last,
incomplete row. He then repeats the process with rows of 13 and rows of 17.
One morning, he finds that there are 3 soldiers left when the rest are in rows of 11, 4
soldiers left when the rest are in rows of 13, and 9 soldiers left when the rest are in rows
of 17. He knows that there are 1000 soldiers in his army. How many of the soldiers are
present this morning?
We fist look what the numbers would look like if all 1000 were present. We have

1000 ≡ 10 mod 11; 1000 ≡ 12 mod 13; 1000 ≡ 14 mod 17,

so clearly not all soldiers are present. So we are asked to find a number X such that the
following systems of equivalences is satisfied

X ≡ 3 mod 11;

X ≡ 4 mod 13;

X ≡ 9 mod 17.

From the last equivalence we get X = 17Y + 9 for some Y . From the second we get

X = 17Y +9 ≡ 4Y +9
!≡ 4 mod 13, i.e., 4Y ≡ 8 mod 13. In this case we can divide both

sides by 4 and get Y ≡ 2 mod 13; in general we could use Bézout’s identity to compute
the inverse of 4 modulo 13, namely 4 · 10 ≡ 1 mod 13, to obtain Y ≡ 2 mod 13. This
means that with some Z we have

X = 17 · 13Z + 17 · 2 + 9 = 17 · 13Z + 43

as combination of the last two equations. Continuing to the first we get X = 17·13Z+43 ≡
Z + 10

!≡ 3 mod 11 which immediately gives Z ≡ 4 mod 11 and thus for some A

X = 17 · 13 · 11A+ 17 · 13 · 4 + 43 = 2431A+ 927.
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From the story we know that the number of soldiers is positive and at most 1000 and so
A = 0 is the only possibility leading to X = 927.
So apparently the general got a very bad day to count his soldiers since 73 were absent
(which is a sufficiently high number to avoid students guessing the correct solution).

In the following section we show a generalization of this example to arbitrary rings; to
conclude this section we state the Chinese Remainder Theorem only for the integers.

Theorem 79 (Chinese Remainder Theorem)
Let r1, . . . , rk ∈ ZZ and let 0 6= n1, · · · , nk ∈ IN such that the ni are pairwise coprime. The
system of equivalences

X ≡ r1 mod n1,

X ≡ r2 mod n2,
...

X ≡ rk mod nk,

has a solution X which is unique up to multiples of N = n1 · n2 · · ·nk. The set of all
solutions is given by {X + aN |a ∈ ZZ} = X +NZZ.

Proof. To prove the theorem we state a homomorphism between ZZ/NZZ and the
Cartesian product ZZ/n1ZZ× ZZ/n2ZZ× · · · × ZZ/nkZZ and show it to be an isomorphism.
That implies that every set of equations (right hand side of the map) has a unique
preimage X ∈ ZZ/NZZ.
Define ψ : ZZ/NZZ → ZZ/n1ZZ × ZZ/n2ZZ × · · · × ZZ/nkZZ; X + NZZ 7→ ((X mod n1) +
n1ZZ, (X mod n2) + n2ZZ, . . . , (X mod nk) + nkZZ). The map ψ is homomorphic with
respect to + and to · since by Lemma 30 we have X + Y ≡ (X mod ni) + (Y mod ni)
and X · Y ≡ (X mod ni) · (Y mod ni) and each ni divides N .
The image and the domain have the same cardinality N and so the map is an iso-
morphism if it is injective. The kernel of ψ consists of those elements which map
to (n1ZZ, n2ZZ, . . . , nkZZ), which are exactly those X + NZZ where X is divisible by
n1, n2, . . . , nk. Since the ni are coprime, X must be divisible by their product, i.e. by N ,
which implies X ≡ 0 mod N and so ψ is an isomorphism. 2

If the ni are not all coprime the system might not have a solution at all. E.g. the
system X ≡ 1 mod 8 and X ≡ 2 mod 6 does not have a solution since the first
congruence implies that X is odd while the second one implies that X is even. If
the system has a solution then it is unique only modulo lcm(n1, n2, . . . , nk). E.g. the
system X ≡ 4 mod 8 and X ≡ 2 mod 6 has solutions and the solutions are unique
modulo 24. Replace X ≡ 2 mod 6 by X ≡ 2 mod 3; the system still carries the same

information and we obtain X = 8a + 4 ≡ 2a + 1
!≡ 2 mod 3, thus a ≡ 2 mod 3 and

X = 8(3b+ 2) + 4 = 24b+ 20. The smallest positive solution is thus 20.

We can now prove Lemma 36 which states that for n = pe1
1 p

e2
2 p

e3
3 · · · per

r with p1, p2, . . . , pr

distinct primes and positive exponents e1, e2, . . . , er ∈ ZZ we have

ϕ(n) =
r∏

i=1

(pei
i − p

ei−1
i ) = n ·

r∏
i=1

(
1− 1

pi

)
.
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Proof. We first observe that the two expressions are equal as pei
i − p

ei−1
i = pei

i (1− 1/pi)
and n = pe1

1 p
e2
2 p

e3
3 · · · per

r .
We prove the main result by induction on the number of prime factors r. For r = 1,
i.e. n = pe1

1 a prime power, there are pe1
1 − pe1−1

1 positive numbers coprime to n and < n
because there are pe1−1

1 multiples of p1 in {0, 1, 2, . . . , n− 1}.
By assumption we have ϕ

(
pe1

1 p
e2
2 p

e3
3 · · · p

er−1

r−1

)
=
∏r−1

i=1 (pei
i −p

ei−1
i ) and ϕ (per

r ) = per
r −per−1

r .
Let 0 ≤ a < pe1

1 p
e2
2 p

e3
3 · · · p

er−1

r−1 and 0 ≤ b < per
r . The system of equations

X ≡ a mod pe1
1 p

e2
2 p

e3
3 · · · p

er−1

r−1 ,

X ≡ b mod per
r ,

has a unique solution 0 ≤ X < n. So for each of the ϕ
(
pe1

1 p
e2
2 p

e3
3 · · · p

er−1

r−1

)
values of a

coprime to pe1
1 p

e2
2 p

e3
3 · · · p

er−1

r−1 and each of the ϕ (per
r ) values of b coprime to per

r there is
exactly one solution 0 ≤ X < n which shows that

ϕ(n) =
(
per

r − per−1
r

) r−1∏
i=1

(pei
i − p

ei−1
i ) =

r∏
i=1

(pei
i − p

ei−1
i ).

2

Exercise 80 1. The Gaussian integers ZZ[i] are a subset of the complex numbers, de-
fined as

ZZ[i] = {a+ bi|a, b ∈ ZZ} .
We define addition and multiplication as in C by

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i.

Show that (ZZ[i],+, ·) is a commutative ring with unity.

2. Let (R, ◦, �) be ring and let a, b ∈ R, n ∈ IN. Show that

(a ◦ b)n =
n∑

i=0

[(
n

i

)]
aibn−i,

where [n]g = g ◦ g ◦ · · · ◦ g (n-times), the binomial coefficients are as in Chapter ??,
and the exponentiation ai denotes the i fold product of a with itself: a � a � · · · � a.
Hint: Use induction on n.

3. Show that the set

C[x, y] =

{
n∑

i=0

m∑
j=0

aijx
iyj

∣∣∣∣∣ aij ∈ C , n,m ∈ IN

}

is a ring with respect to the usual addition and multiplication.

4. Prove Lemma 69. Note that the proof is completely analogous to the considerations
for the special case (ZZ/nZZ)×.
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1.6 Further reading on rings

This section introduces ideals and subrings. These concepts are important in algebra and
the proofs in the previous section could be stated more elegantly and in full generality
using these notations but we decided to go for a more direct approach of proving results
for special cases only. We include this section for the interested reader. The exercises are
optional.
In Example 62 we considered the ring nZZ which is a subset of ZZ and forms a ring with
respect to the same operations. So we can define subrings analogously to subgroups.
However, even more is true: we can multiply an element an ∈ nZZ by any integer b ∈ Z
and obtain an · b = (ab)n, a multiple of n. Subrings with this property are called ideals.
For simplicity and since all examples we encounter are commutative, we from now on
work with commutative rings R.

Definition 81 (Subring, ideal)
Let (R, ◦, �) be a ring and let R′ ⊆ R be a subset of R. If (R′, ◦, �) is a ring then R′ is a
subring of R.
Let I ⊆ R be a subset of the commutative ring R. If I is a subring of R and closed under
� with arbitrary elements from R, i.e. I �R ⊆ I then I is called an ideal of R.

Example 82 1. Let n ∈ IN. The set nZZ of multiples of n is a ring and thus a subring
of ZZ. Since an · b = (ab)n a multiple of n for arbitrary integers b, the set nZZ is an
ideal in ZZ.

2. Consider the ring of polynomials C[x] in x over C and the subset

xC[x] =

{
x

n∑
i=0

aix
i|ai ∈ C , n ∈ IN

}
.

Sums and differences of such polynomials are of the same form

x

n∑
i=0

aix
i − x

m∑
i=0

bix
i = x

max{n,m}∑
i=0

(ai + bi)x
i

and if we multiply a polynomial in xC[x] by an arbitrary one, the resulting polyno-
mial is a multiple of x since

x

(
n∑

i=0

ai+1x
i

)
·

(
m∑

i=0

bix
i

)
= x

n+m∑
i=0

(
i∑

j=0

ajbi−j

)
xi.

So xC[x] not only forms a subring of C[x] but even an ideal.

Ideals are an important concept particularly since they allow to generalize the concept
of quotient groups to rings.

Definition 83 (Quotient ring)
Let (R, ◦, �) be a commutative ring and let I be an ideal of R. The quotient ring R/I of
R modulo I is defined as

R/I = {a ◦ I|a ∈ R}.
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We have the analogue of Lemma 40 in the setting of rings:

Lemma 84 Let (R, ◦, �) be a commutative ring and let I be an ideal in R. The quotient
ring R/I is a commutative ring with respect to the following operations inherited from R:

(a ◦ I) ◦ (b ◦ I) = (a ◦ b) ◦ I
(a ◦ I) � (b ◦ I) = (a � b) ◦ I.

Proof. Since an ideal is in particular a subgroup with respect to the first operation ◦ we
get from Lemma 40 that (R/I, ◦) is a group. If R is abelian with respect to ◦ then so is
R/I.
For the second operation we first need to show that the operation is well-defined. Let
a′ ◦ I = a ◦ I and b′ ◦ I = b ◦ I, i.e. there exist ia, ib ∈ I so that a′ = a ◦ ia and b′ = b ◦ ib.
We have

(a′◦I)�(b′◦I) = ((a◦ia)◦I)�((b◦ib)◦I) = ((a◦ia)�(b◦ib))◦I = (a�b)◦(a�ib)◦(ia�b)◦(ia�ib)◦I = (a�b)◦I

since a � ib, ia � b, ia � ib ∈ I by the definition of an ideal. So the resulting residue class is
independent of the representatives chosen.
Since R is closed under � so is R/I and associativity, commutativity, and the distributive
laws are inherited, too. 2

Remark 85 Note that this lemma does not hold if the conditions on I are released and
only a subring is required.
Let R′ be a subring, then the operation � need not necessarily be well-defined on R/R′

since we have no reason to assume that a � ib and ia � b (expressions from the proof of
Lemma 84) are in R′. This is where the property that ideals are closed under � with
arbitrary elements is crucial.

Example 86 Since for any n ∈ IN we have that nZZ is an ideal in ZZ, Lemma 84 directly
gives that ZZ/nZZ is a ring for any n.

Definition 87 (Ring homomorphism)
Let (R, ◦, �) and (R′, ◦′, �′) be rings and let ψ be a map ψ : R → R′. If for any a, b ∈ R
the map ψ satisfies

ψ(a ◦ b) = ψ(a) ◦′ ψ(b)

ψ(a � b) = ψ(a) �′ ψ(b)

then ψ is a ring homomorphism.
A homomorphism ψ is an isomorphism if it is bijective.

Similar to the group case one can study the kernel and image of this map.

Theorem 88 Let (R, ◦, �) and (R′, ◦′, �′) be rings with unity and let ψ be a homomor-
phism. The kernel Ker(ψ) of ψ is an ideal in R and Im(ψ) ∼= R/Ker(ψ).
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Proof. Theorem 50 shows that (Ker(ψ), ◦) is a subgroup of (R, ◦). Let a ∈ Ker(ψ), i.e.
ψ(a) = e◦′ . We have to show that for any r ∈ R we have r � a ∈ Ker(ψ):

ψ(r � a) = ψ(r) �′ ψ(a) = ψ(r) �′ e◦′ = e◦′ ,

where the last result followed by Lemma 63. So Ker(ψ) is indeed an ideal.
To show the isomorphism the same construction as in Theorem 50 works. 2

Remark 89 A different way to motivate ideals is to start from the properties a ring
homomorphisms should have and obtain, that the kernel of that map is not only a subring
but has additional multiplicative structure.

Definition 90 (Generator, principal ideal)
Let (R, ◦, �) be a commutative ring and let I be an ideal.
If there exist elements g1, . . . , gl such that

I = {(g1 � r1) ◦ · · · ◦ (gl � rl)|r1, . . . rl ∈ R}

then I is generated by g1, . . . , gl written

I = (g1, . . . , gl).

If there exists a single element g ∈ I such that

I = (g) = {g � r|r ∈ R}

then I is called a principal ideal. In this case, I is the ideal generated by g and g is called
the generator of I.
The ring R is called a principal ideal domain (PID) if every ideal is a principal ideal.

Lemma 91 Let (R, ◦, �) be a commutative ring and let g ∈ R. The set (g) = {g�r|r ∈ R}
forms an ideal in R.
In more generality, let g1, . . . , gl ∈ R. The set (g1, . . . , gl) is an ideal.

Proof. The proof is left to the reader as Exercise 1. 2

Example 92 1. Consider the ring of integers Z. We have seen that the subrings nZZ
for n ∈ IN are ideals in ZZ. Apparently

nZZ = {nz|z ∈ ZZ} = (n),

and so nZZ is a principal ideal generated by n.

We now show that every ideal in ZZ is a principal ideal and thus ZZ is a principal
ideal domain. We have to distinguish two cases, I = {0} = (0) which is generated
by 0 and I 6= {0}.
Let g ∈ I be the smallest positive integer in I. We now show that I = (g). Since
I is an ideal all multiples of g are in I and thus I ⊇ (g). Assume that there is an
element b ∈ I\(g). Then we can divide b by g with remainder 0 < r < g and obtain
b = qg+ r. Since b and qg are in I so is r = b− qg by the definition of ideals. This
contradicts the minimality of g.

So ZZ is a principal ideal domain.
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2. The Gaussian integers ZZ[i] ⊂ C are a principal ideal domain. As for the integers
we can define greatest common divisors and the proof follows along the same lines.

3. The set

C[x, y] =

{
n∑

i=0

m∑
j=0

aijx
iyj | aij ∈ C , n,m ∈ IN

}
is a ring, the polynomial ring in two variables (cf. Exercise 3). The ideal (x, y)
generated by x and y is not a principal ideal. Assume on the contrary that there
exists some f(x, y) ∈ C[x, y] such that (f) = (x, y), so in particular there must
exist fx and fy such that x = fx · f and y = fy · f . The first condition limits f to
constants f ∈ C or constant multiples of x, i.e. f ∈ xC , while the second condition
eliminates the latter possibility. So f ∈ C but since (x, y) does not contain any
constant except for 0 we must have f = 0 which contradicts that f can generate a
non-trivial ideal.

In the previous section we showed the Chinese remainder theorem for the integers. Now
that we have the vocabulary of quotient rings and homomorphisms we can state the
general version.

Theorem 93 (Chinese Remainder Theorem)
Let R be a Euclidean domain and let n1, . . . , nk ∈ R be pairwise coprime. Let n = n1 �
n2�· · ·�nk. The quotient ring R/nR and the product ring R/n1R×R/n2R×· · ·×R/nkR
are isomorphic via the map

ψ : R/nR→ (R/n1R× · · · ×R/nkR); ψ(x ◦ nR) = (x ◦ n1R, . . . , x ◦ nkR).

Proof. The proof is similar to the integer case. We first note that ψ is a homomorphism
since ◦ and � are compatible with computing modulo principal ideals.
For the integers we could argue with the cardinalities of the domain and image. In the
general case it is easier to give the inverse map to show that ψ is an isomorphism. Let li
be defined by li � ni = n. Since li and ni are coprime, Bézout’s identity (Lemma 75) says
that there exist elements ai, bi ∈ R such that ai � li ◦ bi � ni = e�. Put ci = ai � li. The
inverse map is given by

ψ−1 : (R/n1R× · · · ×R/nkR)→ R/nR; (x1 ◦ n1R, . . . , xk ◦ nkR) 7→

(
k∑

i=1

xi � ci

)
◦ nR,

where the summation sign stands for repeated application of ◦. To see that ψ−1 is
well defined note that ((xi ◦ (ni � ri)) � ci) ◦ nR = ((xi � ci) ◦ ((ni � ri) � ci)) ◦ nR =
((xi �ci)◦ ((ni �ri)� (ai � li)))◦nR = (xi �ci)◦nR since (ni �ri)� (ai � li) = (ni � li)� (ai �ri)
is a multiple of n.
We have

ψ(ψ−1(x ◦ n1R, . . . , x ◦ nkR)) = ψ

((
k∑

i=1

xi � ci

)
◦ nR

)
= (x ◦ n1R, . . . , x ◦ nkR),
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since for every 1 ≤ j ≤ k we have
(∑k

i=1 xi � ci
)
◦ njR =

(∑k
i=1 xi � (ai � li)

)
◦ njR =

xj � (aj � lj) ◦ njR = xj � e� ◦ njR = xj ◦ njR. Here we used that li ∈ njR for i 6= j.
Likewise we have

ψ−1(ψ(x ◦ nR)) = ψ−1(x ◦ n1R, . . . , x ◦ nkR) =

(
k∑

i=1

(x ◦ (ni � ri)) � ci

)
◦ nR

=

(
k∑

i=1

((x � ci) ◦ ((ni � ri) � (ai � li)))

)
◦ nR = x

k∑
i=1

ci ◦ nR.

To show that
∑k

i=1 ci ◦ nR = e� ◦ nR we show that n
∣∣∣((∑k

i=1 ci

)
◦ inv◦(e�)

)
. By

definition of ci = ai � li we have for every factor nj of n that nj|ai � li for i 6= j and

nj|aj � lj ◦ inv◦(e�). So for every 1 ≤ j ≤ k we have nj

∣∣∣((∑k
i=1 ci

)
◦ inv◦(e�)

)
. Since

the nj are co-prime the claim follows from Lemma 77. 2

Exercise 94 1. Prove Lemma 91.

1.7 Fields

Fields are special rings in which also the second operation � is commutative and in which
every element 6= e◦ has an inverse with respect to �. Familiar examples are the rational
numbers, the reals and the complex numbers. This section is kept very short since most
of the concepts are only needed for finite fields with are studied separately in Chapter ??.

Definition 95 (Field)
A set K is a field with respect to two operations ◦, � denoted by (K, ◦, �) if

1. (K, ◦) is an abelian group.

2. (K∗, �) is an abelian group, where K∗ = K\{e◦} is all of K except for the neutral
element with respect to ◦.

3. The distributive law holds in K:

a � (b ◦ c) = a � b ◦ a � c for all a, b, c ∈ K.

Let L be a field and K ⊆ L. If K is a field itself it is a subfield of L and L is an extension
field of K.

An alternative definition is to say that a field is a commutative ring with unity in which
every element in K∗ has an inverse with respect to �.
We start with an easy but important observation

Lemma 96 Let (K, ◦, �) be a field and let e◦ be the neutral element with respect to ◦.
For any a ∈ K we have:

a � e◦ = e◦.

Fields are free of zero divisors, i.e. if for a, b ∈ K one has a � b = e◦ then either a = e◦
or b = e◦ or both.
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Proof. The first part was shown already in Lemma 63. To prove the second part assume
a 6= e◦. Thus a ∈ K∗ has an inverse inv�(a) 6= e◦ since K∗ is closed under �. So we get:

e◦ = inv�(a) � (a � b)
= (inv�(a) � a) � b = b,

i.e. e◦ = b. 2

Example 97 1. The rational numbers (Q,+, ·) form a field. We have already seen
that they form a commutative ring with unity so the only thing to show is that in
(Q∗, ·) every element has an inverse. By the very construction of the rationals the
inverse of 0 6= a

b
is given by b

a
since a

b
· b

a
= 1. If a 6= 0 then the inverse exists and

since 0 is the neutral element of addition it is not in Q∗.

2. Further fields are (C ,+, ·) and (IR,+, ·), where IR is an extension field of Q and a
subfield of C while C is an extension field of both.

3. The integers form a commutative ring with unity but not a field since only 1 and
−1 are invertible.

4. Let p ∈ IN be a prime number. The set of residue classes modulo p (ZZ/pZZ,+, ·) is
a field:
We have seen that (ZZ/nZZ,+, ·) is a commutative ring with unity for any integer
n. By Lemma 33 we have that the invertible elements a + pZZ are exactly those
classes for which a is coprime to p. Since p is prime these are all nonzero classes,
so (ZZ/pZZ)× = ZZ/pZZ \ {0} and so (ZZ/pZZ,+, ·) is a field.

This is the first example of a finite field. We will study finite fields in much more
detail in Chapter ??.

For those readers who read the previous section on ideals we would like to add the
following lemma.

Lemma 98 Let (K, ◦, �) be a field and let I ⊂ K be an ideal. Then I = K or I = {e◦}.

Proof. We first note that a field is also a ring, so speaking of an ideal makes sense. Let us
first consider the case that there is an element a 6= e◦ in I. Since K is a field there exists
inv�(a) ∈ K and by the multiplicative property of ideals we must have a�inv�(a) = e� ∈ I.
Again by the multiplicative property every b ∈ K is also in I as b � e� = b, so I = K.
We have seen earlier that I = {e◦} is an ideal for any ring with unity, so this also holds
for a field. 2

Exercise 99 Consider the subset Q(i) ⊂ C defined by

Q(i) = {a+ bi|a, b ∈ Q}.

Show that (Q(i),+, ·) is a field, where addition and multiplication are defined as in C .
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1.8 Polynomials

Polynomials become very important in the construction of finite fields in the following
chapter. They are also a nice example of a ring and share many properties with the ring
of integers.

Definition 100 (Polynomial)
Let K be a field. A polynomial in one variable x over K is a finite sum of powers of x
with coefficients fi in the field K

f(x) =
n∑

i=0

fix
i, fi ∈ K.

We denote the set of polynomials in x over K by K[x] and have

K[x] =

{
n∑

i=0

fix
i|n ∈ IN, fi ∈ K

}
.

Example 101 f(x) = 3x7 +
√

2x4 − 27x3 + 2x + 100 and g(x) = 1024x10 + 256x8 +
32x5 + 16x4 + 4x2 + 1 are polynomials over the reals f(x), g(x) ∈ IR[x].
Instead of calling the variable x one can also define K[y] or K[t], e.g. h(t) = 23t12−4t+
3 ∈ Q[t].

Note that
∑n

i=0 fix
i and 0 · xn+1 +

∑n
i=0 fix

i define the same polynomial just as one can
also write 0127 instead of 127. It would be more correct to introduce polynomials as
equivalence classes which can be filled up with leading zeros. We usually omit leading
zeros.

Definition 102 (Degree and leading term)
Let f ∈ K[x] be a nonzero polynomial over a field K. Let n be the largest integer with
fn 6= 0, then n is called the degree of f , denoted by deg(f) = n, and fn is called the
leading coefficient of f , denoted by LC(f) = fn. The leading term of f is LT (f) = fnx

n.
A polynomial f is called monic if LC(f) = 1.

All the definitions carry through for the case that the coefficients are from a ring R rather
than from a field K. However, if K is a field one can normalize each polynomial to make
it monic by dividing by LC(f). Over a ring the leading term need not be invertible.

Example 103 Consider f, g ∈ IR[x] as defined in Example 101. We have

f(x) = 3x7 +
√

2x4 − 27x3 + 2x+ 100, deg(f) = 7, LC(f) = 3

and

g(x) = 1024x10 + 256x8 + 32x5 + 16x4 + 4x2 + 1, deg(g) = 10, LC(g) = 1024.
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Lemma 104 Let (K,+, ·) be a field. The polynomials K[x] form a ring with the opera-
tions

f(x) + g(x) =
n∑

i=0

fix
i +

m∑
i=0

gix
i =

max{n,m}∑
i=0

(fi + gi)x
i,

f(x) · g(x) =
n∑

i=0

fix
i ·

m∑
i=0

gix
i =

n+m∑
i=0

(
i∑

j=0

fjgi−j

)
xi,

where f, g ∈ K[x] and fi = 0 for i > n and gi = 0 for i > m.
Furthermore, multiplication in K[x] is commutative and K[x] is a ring with unity, namely
1 ∈ K ⊂ K[x] is the neutral element with respect to multiplication. There are no zero
divisors in K[x].

Proof. Apparently the results are sums of powers of x of finite lengths (max{n,m} and
n+m). Since K is a field, the new coefficients (fi + gi) and

∑i
j=0 fjgi−j are in K as well.

So K[x] is closed under addition and multiplication.
Associativity and commutativity of + and · follow from the same properties of K. The
neutral element of addition is 0 ∈ K ⊂ K[x] and of multiplication 1 ∈ K ⊂ K[x] as can
be seen directly.
The additive inverse of f(x) =

∑n
i=0 fix

i is −f(x) =
∑n

i=0(−fi)x
i which is in K[x] since

−fi ∈ K for 0 ≤ i ≤ n.
The distributive laws can be checked by direct inspection. We leave that part of the proof
as an exercise to the reader.
Let f(x) · g(x) = 0, i.e.

∑i
j=0 fjgi−j = 0 for all 0 ≤ i ≤ m + n. Since K is a field we

obtain for i = 0 that either g0 = 0 or f0 = 0 or both. Assume first f0 = 0 and g0 6= 0.
For i = 1 we obtain that f0g1 + f1g0 = f1g0 = 0 and so f1 = 0. For i = 2 we obtain that
f0g2 + f1g1 + f2g0 = f2g0 = 0 and so f2 = 0. Repeating the same argument leads to
f(x) = 0. If both f0 = g0 = 0 then i = 1 does not lead to any condition on f1 or g1. For
i = 2 we obtain that f0g2 + f1g1 + f2g0 = f1g1 = 0 and so either f1 = 0 or g1 = 0 or both.
Eventually we obtain f(x) = 0 or g(x) = 0 or both, so there are no zero divisors inK[x]. 2

Example 105 With f, g ∈ IR[x] as in Example 101 we have

f(x) + g(x) = 1024x10 + 256x8 + 3x7 + 32x5 + (16 +
√

2)x4 − 27x3 + 4x2 + 2x+ 101.

and

f(x) · g(x) = 3072x17 + 768x15 + 1024
√

2x14 − 27648x13 + (96 + 256
√

2)x12 − 4816x11 +

102400x10 + (524 + 32
√

2)x9 + (24736 + 16
√

2)x8 − 429x7 + (64 + 4
√

2)x6 +

3124x5 + (1600 +
√

2)x4 − 19x3 + 400x2 − 2x+ 100.

Definition 106 (Roots)
One can consider a polynomial f(x) =

∑n
i=0 fix

i ∈ K[x] as a function

f : K → K,α 7→ f(α) =
n∑

i=0

fiα
i.
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Computing f(α) is called evaluating f(x) in x = α.
A root of f is an element α ∈ K such that f(α) = 0. So the roots form the kernel of the
map f defined above.

Lemma 107 Let f ∈ K[x]. If α ∈ K is a root of f then

(x− α)|f(x).

The proof is left to the reader as Exercise 116. An immediate consequence of this lemma
is the following corollary.

Corollary 108 Let f ∈ K[x] be a polynomial of degree n. It has at most n roots.

Sometimes it is helpful to change the variables in a reversible way, e.g. in the polynomial
g(x) in Example 101 one can substitute y = 2x and obtain g̃(y) = y10+y8+y5+y4+y2+1.
A transformation of the form y = ax+ b does not change the degree and there is a simple
linear relation between the roots of the original and the resulting polynomial. In this
example the relation between g and g̃ is particularly simple.

There are many similarities between the ring of integers and the ring of polynomials over
a field, in particular we find “primes” and show that each polynomial can be factored
uniquely into a product of them. These so-called “irreducible polynomials” play an
important role in constructing finite fields as we will see in Chapter ??.

Definition 109 (Irreducible polynomial)
Let K be a field. A polynomial f(x) ∈ K [x] of degree at least 1 is irreducible if it cannot
be written as a product of polynomials of lower degree over the same field, i.e. if u(x)|f(x)
implies u is constant or u(x) = f(x).
Otherwise f(x) is reducible.

Example 110 Consider polynomials over the rational numbers Q.

a) f(x) = x2 + 2x− 8 has roots 2 and −4 and thus splits as f(x) = (x− 2)(x+ 4). The
factors x− 2 and x+ 4 are both irreducible.

b) g(x) = x2 + 2x + 8 does not split over Q but only over C . Therefore, g is irreducible
as polynomial in Q[x].

c) h(x) = x4 + 4x3 + 20x2 + 32x + 64 does not have a root over Q but factors into
x4 + 4x3 + 20x2 + 32x+ 64 = (x2 + 2x+ 8)2 = g(x)2.

Note that for a polynomial of degree less than 4 it is enough to check for roots to determine
whether it is irreducible or not. For polynomials of larger degree there can be non-linear
factors as in the last example.
A prominent example of Euclidean domains is the ring of integers which, as we mentioned
in the introduction, shares many properties with the ring of polynomials over a field. We
now show that the polynomial ring is also a Euclidean domain. That means that one
can define division with remainder and has an algorithm to compute greatest common
divisors, namely the Euclidean algorithm.

Lemma 111 Let K be a field. The ring of polynomials over K is a Euclidean domain
with respect to the degree function v(f) = deg(f), i.e. K[x] is a ring with unity and
without zero divisors, · is commutative and one can define division with remainder so
that the remainder has smaller degree than the divisor or equals 0.
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Proof. We have already seen in Lemma 104 that K[x] is a domain with unity 1 and
that · is commutative. Consider the division with remainder of f by g, where both
f, g ∈ K[x]. Let r ∈ K[x] be the remainder. Let the leading term of f be LT (f) = axn

and of g be LT (g) = bxm. If n < m then r = f is the remainder and obviously
deg(r) < deg(g). Otherwise there exists a polynomial q ∈ K[x] with LT (q) = (a/b)xn−m

(note that a/b is defined since a, b ∈ K \ {0}) such that f splits as f = q · g + r. The
coefficient of xn in r equals a − (a/b) · b = 0 and so the degree of r is strictly smaller
than n. Clearly it is possible that more coefficients in r vanish and the degree drops
dramatically, for example if g|f then r = 0. 2

This lemma implies in particular that greatest common divisors are defined and com-
putable via the Euclidean algorithm.

As in the integers ZZ we have that in K[x] irreducible is the same as prime.

Lemma 112 Let p, f, g ∈ K[x] and let p be irreducible. Then one has

p|f · g ⇒ p|f or p|g.

Proof. Let d = gcd(p, f), then d|p. Since p is irreducible, we must have d = 1 or d = p,
where we use the convention that the gcd is monic.

If d = p then p|f by the definition of gcd. So p|f and we are done.

In case d = 1 we use Lemma 75 and know that there exist u, v ∈ K[x] with d = 1 =
u · p+ v · f . Multiplying both sides by g gives the expression

g = u · p · g + v · f · g.

Both summands on the right are divisible by p. For the second one note that by
assumption p|f · g. Thus also the left hand side must be divisible by p and thus p|g. 2

We are used to factoring integers n ∈ ZZ into powers of primes in a unique manner. The
following lemma shows that the ring of polynomials over a field has the same property of
unique factorization that every non-zero element can be written as a product of irreducible
elements.

Lemma 113 For all f ∈ K[x] there exist monic irreducible polynomials p1, . . . , pr ∈ K[x]
all distinct and exponents e1, . . . , er ∈ IN so that f can be written as

f = k
r∏

i=1

pei
i ,

where k ∈ K.
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Proof. We first show that such a representation exists and then consider uniqueness.
There are two cases, either f itself is irreducible, in which case we put p1 = f/LC(f)
and k = LC(f), or it splits as f = a · b with deg(a), deg(b) < deg(f) and we continue
separately with f = a and f = b. In the latter case both parts have strictly smaller degree
than f which means that this process terminates with some factorization into irreducible
polynomials

f = k
∏

pei
i .

We now assume that the representation is not unique, i.e. there exist monic irreducible
polynomials q1, . . . , qs ∈ K[x], exponents a1, . . . , as ∈ IN, and a field element l ∈ K so
that f can be written as

f = k

r∏
i=1

pei
i = l

s∏
j=1

q
aj

j .

The irreducible polynomial p1 must divide one of the polynomials on the right hand side
by Lemma 112. So there is some qj with p1|qj. Since qj is also irreducible they must be
equal up to constants from K and since both are monic we even have p1 = qj. The left
side is divisible by pe1

1 and so must be the right hand side. Since the qj are all distinct
we must have e1 ≤ aj. By reversing the arguments we obtain the opposite inclusion and
thus e1 = aj. We divide both sides by pe1

1 and repeat the same considerations for p2.
Since the exponents coincide we must have r = s which concludes the proof. 2

Remark 114 It is worth mentioning that the property of having unique factorization is
weaker than being Euclidean. In fact every Euclidean ring has unique factorization. Since
we did not show the general statement we had to prove the result in the special case of
polynomial rings.

Example 115 Let K = ZZ/2ZZ be the field of integers modulo 2. We consider the residue
classes of K[x] modulo f(x) = xn + 1 for some integer n, R = K[x]/(xn + 1)K[x]. In
this important example we show that R is a commutative ring with unity.
We represent each residue class in R by the polynomial of smallest degree in it

R =
{
a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 | ai ∈ K

}
.

1. (K[x]/fK[x],+) is a group: apparently it is closed under addition, associativity is
inherited from K[x], the neutral element is 0 + fK[x], and additive inverses exist
inv
((∑n−1

i=0 aix
i
)

+ fK[x]
)

=
(∑n−1

i=0 (−ai)x
i
)

+ fK[x].

2. (K[x]/fK[x], ·) is a commutative monoid with 1: the product of two classes is
another class, associativity is inherited from K[x], and the neutral element with
respect to multiplication is 1 + fK[x].

3. The distributive laws are inherited from K[x].

The same proof works for any field K and any polynomial f .

Exercise 116 Prove Lemma 107. Hint: divide f(x) by x− α and study the remainder.
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1.9 Vector spaces

The last algebraic concept we introduce in this chapter is one that most readers will be
familiar with from introductory courses on linear algebra and solving of linear equations.
Vector spaces also appear in daily life since we are living in a three dimensional space and
thus positions can be specified by giving the height and extensions in width and length.

Definition 117 (Vector space)
A set V is a vector space over a field (K, ◦, �) with respect to one operation ⊕ if

1. (V,⊕) is an abelian group.

2. (K, ◦, �) is a field. Let e◦, e� be the neutral elements with respect to ◦ and �.

3. There exists an operation � : K × V → V such that for all a, b ∈ K and for all
v, w ∈ V we have

(a ◦ b)� v = a� v ⊕ b� v
a� (v ⊕ w) = a� v ⊕ a� w

e� � v = v

Example 118 Consider the field (IR,+, ·) and define an operation on the 3-tuples
(x, y, z) ∈ IR3 by componentwise addition

(x1, y1, z1)⊕ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2)

and for a ∈ IR let
a� (x1, y1, z1) = (ax1, ay1, az1).

Since IR is closed under addition and multiplication and since the distributive laws hold
we have that IR3 forms a vector space over IR with these operations.
The same holds for IRn for any integer n.
To ease notation we replace ⊕ by + and omit � in IRn.

Example 119 The complex numbers C form a vector space over the reals (IR,+, ·) where
the operations are defined as follows:
⊕ is the standard addition of complex numbers, i.e.

(a+ bi)⊕ (c+ di) = (a+ c) + (b+ d)i,

and � is the standard multiplication, i.e.

a� (b+ ci) = (a · b) + (a · c)i,

in which the first argument is restricted to IR.
This fulfills the definition since we have already seen that (IR,+, ·) and (C ,+, ·) are both
fields. The last three conditions are automatically satisfied since C is a field.

The previous section dealt extensively with polynomials. They are also a good example
of vector spaces.
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Example 120 Let K be a field and consider the polynomial ring K [x] over K. We
define ⊕ to be the coefficientwise addition, i.e. the usual addition in K[x] and � as
the multiplication of each coefficient by a scalar from K, i.e. polynomial multiplication
restricted to the case that one input polynomial is constant.
Since K[x] forms a ring and K is a field, K[x] also forms a vector space over K.

Example 121 Let K be a field, n ∈ IN and consider the subset Pn of K[x] defined by

Pn = {f(x) ∈ K[x]| deg(f) ≤ n} .

Since addition of polynomials and multiplication by constants do not increase the degree,
Pn is closed under addition and multiplication by scalars from K and is thus a vector
space over K.

The example of C being a vector space over IR can be generalized to arbitrary extension
fields.

Example 122 Let (K, ◦, �) be a field and let L ⊇ K be an extension field of K. Then L
is a vector space over K, where ⊕ = ◦ and � = �.

Definition 123 (Linear combination, basis, dimension)
Let V be a vector space over the field K and let v1, v2, . . . , vn ∈ V .
A linear combination of the vectors v1, v2, . . . , vn is given by

n∑
i=1

λi � vi,

for some λ1, λ2, . . . , λn ∈ K, where the summation sign stands for repeated application of
⊕.
The elements v1, . . . , vn are linearly independent if

∑n
i=1 λi� vi = e⊕ implies that for all

1 ≤ i ≤ n we have λi = e◦.
A set {v1, v2, . . . , vn} is a basis of V if v1, . . . , vn are linearly independent and each
element can be represented as a linear combination of them, i.e.

V =

{
n∑

i=1

λi � vi | λi ∈ K

}
.

The cardinality of the basis is the dimension of V , denoted by dimK(V ).

An alternative definition of basis are that {v1, v2, . . . , vn} is a minimal set of generators,
meaning that there are no fewer elements of V such that each element can be represented
as a linear combination of them.
Yet another definition states that a basis is a maximal set of linearly independent vectors.

Example 124 Consider the vector space IR3. The vectors (1, 0, 0) and (0, 1, 0) are lin-
early independent since

λ1(1, 0, 0) + λ2(0, 1, 0) = (λ1, λ2, 0)
!
= (0, 0, 0)
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forces λ1 = λ2 = 0. They do not form a basis since, e.g., the vector (0, 0, 3) cannot be
represented as a linear combination of them.
Since 2(1, 0, 0) = (2, 0, 0) the vectors (1, 0, 0) and (2, 0, 0) are linearly dependent.
The vectors (1, 0, 0), (0, 1, 0), and (1, 3, 0) are linearly dependent since a non-trivial linear
combination is given by

(1, 0, 0) + 3(0, 1, 0)− (1, 3, 0) = (0, 0, 0).

The vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are linearly independent and every other vector
(x, y, z) ∈ IR3 can be represented as a linear combination of them as

(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

So we have that a basis of IR3 is given by {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and that the dimen-
sion is dimIR(IR3) = 3.
In general dimIR(IRn) = n.

Example 125 We have already seen that the complex numbers form a vector space over
the reals. A basis is given by {1, i} and so the dimension is dimIR(C) = 2.

Example 126 Let K be a field and let Pn ⊂ K [x] be the set of polynomials of degree
at most n. A basis is given by {1, x, x2, x3, . . . , xn} and so the dimension is dimK(Pn) =
n+ 1.
Alternative bases are easy to give. Since K is a field, xi can be replaced by aix

i for
any nonzero ai ∈ K, also linear combinations are possible. So another basis is given
by {5, 3x− 1,−x2, 2x3 + x, . . . , xn + xn−1 + xn−2 + · · ·+ x+ 1}, since the degrees are all
different and so none can be a linear combination of the others, while using linear algebra
we can get every element as a linear combination.

Definition 127 (Subspace)
Let V be a vector space over the field K. A subset W ⊆ V is a subspace if W is a vector
space with respect to the same operations.

Vector spaces will be an important tool in constructing finite fields. Our interest in their
general properties is, however, rather limited. We state some results on fields that need
the definition of vector spaces.

Definition 128 (Extension degree)
Let L be a field and let K be a subfield of L. The extension degree of L over K is defined
as [L : K] = dimK(L).
If dimK(L) is finite, L is a finite extension of K. Otherwise L is a infinite extension of
K.

Lemma 129 Let L be a finite extension field of K and let F be a finite extension field
of L, so K ⊆ L ⊆ F . Then

[F : K] = [F : L] · [L : K].

Let [F : L] = n and [L : K] = m. Let f1, f2, . . . , fn be a basis of F over L and l1, l2, . . . , lm
be a basis of L over K. A basis of F over K is given by

{l1 � f1, l2 � f1, . . . , lm � f1, l1 � f2, l2 � f2, . . . , lm � f2, . . . , l1 � fn, l2 � fn, . . . , lm � fn}.
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Proof. Once we have proved the second claim the first one follows automatically since
the basis has dimK(F ) = nm = dimL(F ) dimK(L) elements.
We first show that every element of F can be represented by a K-linear combination of
l1 � f1, l2 � f1, . . . , lm � f1, l1 � f2, l2 � f2, . . . , lm � f2, . . . , l1 � fn, l2 � fn, . . . , lm � fn. Since
f1, f2, . . . , fn is a basis of F over L, for every element f ∈ F there exist c1, c2, . . . , cn ∈ L
so that f =

∑n
i=1 ci � fi. Likewise every ci ∈ L can be written as a K-linear combination

of l1, l2, . . . , lm as ci =
∑m

j=1 dij � lj with coefficients dij ∈ K. So

f =
n∑

i=1

ci � fi =
n∑

i=1

(
m∑

j=1

dij � lj

)
� fi =

n∑
i=1

m∑
j=1

dij � (lj � fi).

Assume now that l1�f1, l2�f1, . . . , lm�f1, l1�f2, l2�f2, . . . , lm�f2, . . . , l1�fn, l2�fn, . . . , lm�fn

are linear dependent, i.e. there exist a nontrivial linear combination

n∑
i=1

m∑
j=1

dij � (lj � fi) = e◦

and not all dij = e◦. Put ci =
∑m

j=1 dij � lj then
∑n

i=1 ci � fi = e◦. Since the fi form a
basis and are thus linearly independent we must have ci = e◦ for all 1 ≤ i ≤ n. However,
since l1, l2, . . . , lm form a basis the equality

∑m
j=1 dij � lj = e◦ implies that all dij = e◦

which contradicts the assumption. 2
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