
Number Theory and Cryptography
Worked out example for Euclidean algorithm

Algorithm 1 (Extended Euclidean algorithm)
IN: f, g ∈ R
OUT: d, , v ∈ K[x] with d = uf + vg

1. a← [f, 1, 0]

2. b← [g, 0, 1]

3. repeat

(a) c← a− (a[1] div b[1])b

(b) a← b

(c) b← c

while b[1] 6= 0

4. l← LC(a[1]), a← a/l /*LC = leading coefficient, this only applies to polynomials*/

5. d← a[1], u← a[2], v ← a[3]

6. return d, u, v

In this algorithm, div denotes division with remainder. The first component of c is thus
easier written as c[1] ← a[1] mod b[1] but by operating on the whole vector we get to
update the values leading to u and v, too. At each step we have

a[1] = a[2]f + a[3]g and b[1] = b[2]f + b[3]g.

To see this, note that this holds trivially for the initial conditions. If it holds for both a
and b then also for c since it computes a linear relation of both vectors. So each update
maintains the relation and eventually when b[1] = 0, we have that a[1] holds the previous
remainder, which is the gcd of f and g. If the inputs are polynomials, at the end the gcd
is made monic by dividing by the leading coefficient LC(a[1]).

Example 2 Let K = IR and f(x) = x5 +3x3−x2−4x+1, g(x) = x4−8x3 +8x2 +8x−9.
So at first we have a = [f, 1, 0], b = [g, 0, 1].

We have (a[1] div b[1]) = x + 8 and so end the first round with

a = [g, 0, 1],

b = [59x3 − 73x2 − 59x + 73, 1,−x− 8].

Indeed b[1] = f(x) + (−x− 8)g(x).
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With these new values we have (a[1] div b[1]) = 1/59x− 399/3481 and so the second round
ends with

a = [59x3 − 73x2 − 59x + 73, 1,−x− 8],

b = [2202/3481x2 − 2202/3481,−1/59x + 399/3481, 1/59x2 + 73/3481x + 289/3481].

In the third round we have (a[1] div b[1]) = 205379/2202x− 254113/2202 and obtain

a = [2202/3481x2 − 2202/3481,−1/59x + 399/3481, 1/59x2 + 73/3481x + 289/3481],

b = [0, 3481/2202x2 − 13924/1101x + 10443/734,−3481/2202x3 − 6962/1101x + 3481/2202].

Since b[1] = 0 the loop terminates. We have LC(a[1]) = 2202/3481 and thus normalize to

a = [x2 − 1,−59/2202x + 133/734, 59/2202x2 + 73/2202x + 289/2202].

We check that indeed
x2 − 1 = (−59/2202x + 133/734)(x5 + 3x3 − x2 − 4x + 1)+

(59/2202x2 + 73/2202x + 289/2202)(x4 − 8x3 + 8x2 + 8x− 9).

2


